Mjerenje vremena poluraspada neparno-neparnih jezgara bogatih protonima

Giovanni Ursi

Fizički odsjek, Prirodoslovno-matematički fakultet, Bijenička 32, Zagreb

Mentor: dr.sc. Milivoj Uroić Institut Ruđer Bošković, Bijenička 54, Zagreb

U ovom radu određena su vremena poluraspada jezgara nastalih aktivacijom uzoraka željeza i bakra neutronima energije 14.1 MeV. Neutroni su proizvedeni u Cockroft-Waltonovom akceleratoru koristeći D - T reakciju. Brzi neutroni su u bakru inducirali (n,2n) reakciju pri čemu su nastali izotopi ⁶²Cu i ⁶⁴Cu, a kod željeza je (n,p) reakcijom nastao ⁵⁶Mn. Vremena poluraspada određena su prilagodbom eksponencijalno padajuće krivulje na podatke aktivnosti prikupljene NaI(Tl) scintilacijskim detektorom. Prilikom analize podatka kod aktiviranog željeza uočena je prisutnost još jednog izotopa koji prema vremenu poluraspada odgovara ⁵³Fe. Rezultati su u slaganju s podacima iz literature, uz veća odstupanja za ⁵³Fe uslijed postojanja još kratkoživućih izotopa te za ⁶⁴Cu zbog relativno kratkog vremena mjerenja. Monte Carlo metodom simulirani su nizovi od 100 i 30 mjerenja za raspad bakra i željeza respektivno da bi se ocijenile relativne nepouzdanosti uslijed nasumičnosti procesa nuklearnog rapsada.

I. UVOD

Zakon radioaktivnog raspada govori kako se mijenja broj atoma u vremenu u radioaktivnom uzorku. Raspad pojedinog izotopa karakterizira vjerojatnost prijelaza u jedinici vremena, λ . Ukoliko postoji više modova raspada, λ će biti zbroj vjerojatnosti prijelaza svih modova. Za uzorak s N atoma, srednji broj jezgara koje će se raspasti u vremenu dt dan je izrazom

$$dN = -\lambda N dt. \tag{1}$$

Integracijom prethodnog izraza, pri čemu smo pretpostavili da je broj atoma kontinuiran, dobija se konačni izraz zakona radioaktivnog raspada

$$N(t) = N_0 e^{-\lambda t} \tag{2}$$

gdje je N₀ broj atoma u početnom trenutku.

Aktivnost uzorka definirana je kao broj raspada u jedinici vremena te funkcionalno ima istu ovisnost o vremenu kao i broj atoma u uzorku.

$$A(t) = A_0 e^{-\lambda t}.$$
(3)

Inverz konstante λ predstavlja srednje vrijeme života, odnosno vrijeme koje je potrebno da se aktivnost uzorka smanji na 1/e početne vrijednosti. Može se definirati i vrijeme potrebno da se aktivnost smanji na polovinu aktivnosti u početnom trenutku. Takvo vrijeme nazivamo vrijeme poluraspada (poluživota) i povezano je s konstantom raspada sljedećom relacijom

$$T_{1/2} = \frac{\ln 2}{\lambda}.\tag{4}$$

Nestabilnost u inače stabilnim atomima se može inducirati bombardirajući jezgre česticama, tipično neutronima ili alfa česticama. Ukoliko se radi o neutronima govorimo o neutronskoj aktivaciji uzorka. Budući da su neutroni neutralne čestice, nema elektromagnetske interakcije pri prolasku kroz materijal mete što omogućuje dublie prodiranje i homogenu aktivaciju. Pojedine jezgre se mogu koristiti kao emiteri neutrona, npr.²⁵²Cf, ali takvi izvori nemaju mogućnost kontrole toka, a izlazni neutroni nemaju jasno definiranu energiju, stoga se neutroni potrebni za aktivaciju proizvode u eksperimentalnim reaktorima ili akceleratorima. Neutroni će imati različite reakcije s jezgrama ovisno o njihovoj kinetičkoj energiji. Kod termaliziranih neutrona, energije 0.025 eV, neutroni će se uglavnom zadržati u jezgri, a reakcije su (n,γ) ili (n,α) . Brzi neutroni imaju kinetičke energije između 500 keV i 20 MeV. Zbog veće kinetičke energije događa se da neutron izbije nukleone iz jezgre. Dominanatne reakcije sa 14 MeV-skim neutronima su (n,2n) i (n,p) pri čemu nastaju neparno-neparne jezgre, a višak energije se pohranjuje u vezanje nesparenog nukleona.

Jedan način proizvodnje brzih neutrona je korištenje D-T reakcije. Maksimum udarnog presjeka D-T reakcije odgovara formiraju nestabilne jezgre ⁵He (T_{1/2} = $6 \cdot 10^{-22}$ s) koja se potom raspada na alfa česticu i neutron. Reakcija glasi

$${}^{3}\mathrm{H}(d,n){}^{4}\mathrm{He}, \quad Q = 17.589\mathrm{MeV}.$$
 (5)

Poštujući zakone kinematike, lako se može pokazati da energija neutrona iznosi 14.1 MeV. Dobiveni neutroni su monoenergetski te praktički izotropni.

Detekcija zračenja vrši se scintilacijskim detektorom čije su dvije glavne komponente scintilator i fotomultiplikator. Scintilator je materijal čije molekule ulazno zračenje dovede u pobuđeno stanje, a pri deeksitaciji emitiraju svjetlosni bljesak. Fotomultiplikator pretvara svjetlosni bljesak u električni impuls te ga kaskadno pojačava do vrijednosti potrebnih za daljnju analizu. Scintilacijski detektori imaju generalno male vrijednosti mrtvog vremena što ih čini pogodnim za korištenje na uzorcima veće aktivnosti.¹ U korištenom detektoru nalazi se kristal NaI(Tl) i pogodan je za mjerenje gama fotona raspona energija od 60 keV do 5 MeV.

Prirodni bakar ima dva stabilna izotopa; ⁶³Cu s udjelom 69% i ⁶⁵Cu s udjelom 31%. Aktivacijom brzim neutronima dolazi do (n,2n) reakcije na oba izotopa pri čemu nastaju nestabilni izotopi ⁶²Cu i ⁶⁴Cu. Udarni presjeci za obje reakcije su sumjerljivi, stoga možemo očekivati oba izotopa u aktiviranom uzorku. Budući da su oba izotopa β^+ emiteri, scintilacijskim detektorom je moguće mjeriti gama fotone nastale anihilacijom para elektron-pozitron energije 511 keV i tako pratiti aktivnost uzorka. Sheme raspada dane su na slici 1.

Slika 1. Sheme β^+ raspada
² $^{62}\mathrm{Cu}$ i $^{64}\mathrm{Cu}$

Željezo ima 4 stabilna izotopa, od kojih je ⁵⁶Fe najzastupljeniji (92%). Neutroni energije 14.1 MeV induciraju (n,p) reakciju kod svih izotopa, pri čemu nastaju izotopi mangana s istim brojem nukleona. Dodatno, moguće su i (n,2n) te (n, α) reakcije na nekim izotopima, ali s manjim udarnim presjecima. Stoga, izotop čije vrijeme poluraspada promatramo je ⁵⁶Mn. Iako je udarni presjek za reakciju ⁵⁴Fe(n,p)⁵⁴Mn najveći, dugo vrijeme poluraspada od 312.3 dana³, i mali udio ⁵⁴Fe znači da će ta komponenta biti praktički zanemariva u mjerenjima. Slični argumenti vrijede i za izotope ⁵⁷Mn i ⁵⁸Mn, ali je kod njih vrijeme života puno kraće.⁴ Izotop ⁵⁶Mn se raspada čistim β^- raspadom što znači da se ne može izravno detektirati scintilacijskim detektorom, ali produkt raspada je jezgra⁵⁶Fe u pobuđenim stanjima koja pri deeksitaciji emitira gama zračenje. Shema raspada je dana na slici 2.

Slika 2. Shema raspada
2 $\rm ^{56}Mn$

II. EKSPERIMENTALNA METODA

Aktivacija i mjerenja obavljena su u Laboratoriju za nuklearnu fiziku Zavoda za eksperimentalnu fiziku na Institutu Ruđer Bošković. Brzi neutroni se proizvode u linearnom elektrostatskom akceleratoru tipa Cockroft-Walton koji je spojen na visokonaponski transformator koji ima mogućnost regulacije izlaznog napona do 300 kV. Shema akceleratora je prikazana na slici 3.

Slika 3. Shema korištenog akceleratora

Akceleratorska cijev je spojena na vakuumski sustav

3

kojeg čine predpumpa i turbomolekuralrna pumpa. U cijev se dovodi deuterij u plinovitom stanju koji se ionizira RF oscilatorom. Deuteroni se zatim ubrzavaju kroz električno polje do stacionarne produkcijske mete u koju je tvornički implementiran tricij. Uzorak za aktivaciju postavljamo iza produkcijske mete, izvan akceleratorske cijevi kako bi postigli što veći broj reakcija. Energija deuterijskog snopa potrebna za dobivanje rezonancije reakcije (5) je 108 keV. U praksi se napon ubzranja postavlja između 100 i 150 kV ovisno o istrošenosti mete. Tok proizvedenih neutrona prati se neizravno, mjereći pridružene alfa čestice.

Aktivirani uzorak postavlja se u scintilacijski detektor koji broji gama fotone. Detektor je spojen na brojač koji je prikazivao broj detektiranih gama fotona u jednoj minuti. Kako bi se omogućilo mjerenje aktivnosti dugoživućih izotopa bez potrebe za fizičkim očitanjem brojača svake minute, digitalnom akvizicijom su podaci spremani u datoteku koja je kasnije analizirana u Pythonu.

III. REZULTATI I DISKUSIJA

III.1. Uzorak željeza

Nakon aktivacije uzorka željeza, mjerena mu je aktivnost kroz period od 91 sata s prosječnim korakom od 62.3 sekunde. Grafički prikaz dan je na slici 4 .

Slika 4. Raspad aktiviranog uzorka željeza i pripadna nelinearna prilagodba

Nakon prilagodbe na jednu eksponencijalu prikazano je odstupanje podataka od krivulje kao provjera. Odstupanje je bilo veće u ranim trenucima te je sugeriralo na postojanje još jednog izotopa s kraćim vremenom poluraspada u uzorku. Za određivanje vremena poluraspada $T_{1/2}$ za dva izotopa koji se raspadaju nezavisno na podatke je prilagođena krivulja eksponencijalnog pada

oblika

$$N(t) = C_1 2^{-t/T_1} + C_2 2^{-t/T_2} + N_0.$$
(6)

Usporedbom dobivenog rezultata za nepoznati izotop s tabličnim vrijednostima otkriveno je da se radi o 53 Fe koji je nastao reakcijom 54 Fe(n,2n) 53 Fe.

Razlog zbog kojeg se ovaj izotop mogao detektirati unatoč malom udjelu $^{54}{\rm Fe}$ i malog udarnog presjeka je taj što ima veliku specifičnu aktivnost zbog kratkog vremena poluraspada. Prikaz rezultata i tabličnih vrijednosti dan je u tablici I.

Izotop	Izmjereno vrijeme	Tablična vrijednost 25
53 Fe	$(7.9 \pm 0.1) \text{ min}$	$(8.51 \pm 0.02) \min$
⁵⁶ Mn	(2.58 ± 0.02) h	$(2.5789 \pm 0.0001) \ {\rm h}$

Tablica I. Vremena poluraspada izotopa željeza i mangana iz nelinearne prilagodbe i pripadne tablične vrijednosti

Ako se pretpostavi postojanje samo 56 Mn, dobije se $T_{1/2}=(2.5702\pm0.0005)$ h što je bolje određen rezultat, ali zbog postojanja još jednog izotopa ne možemo ga koristiti.

 53 Fe ima kratko vrijeme života, ali veće od intervala mjerenja pa je očekivanje da će biti preciznije određen. Odstupanja su vjerojatno posljedica prisutnosti izotopa 57 Mn i 58 Mn s vremenima poluraspada 1.7 min i 1.1 min respektivno.⁴. Također, 53 Fe ima i pobuđeno stanje iz kojeg prelazi u osnovno s vremenom života 2.51 min što isto utječe na mjerenja. Ako bi htjeli smanjiti utjecaj kratkoživućih izotopa na određivanje vremena poluraspada 56 Mn, uzorak se nakon aktivacije može ostaviti neko vrijeme da se ti izotopi raspadnu.

III.2. Uzorak bakra

Aktiviranom uzorku bakra praćena je aktivnost 66 sati. Očekujemo prisutnost izotopa $^{62}\mathrm{Cu}$ i $^{64}\mathrm{Cu}$ koji se raspadaju nezavisno pa je krivulja prilagodbe ista kao u prethodnom slučaju.

Grafički prikaz podataka s krivuljom prilagodbe je na slici 5. Odstupanja ne ukazuju na postojanje dodatnog izvora pa se može zaključiti da krivulja dobro opisuje aktivnost promatranog uzorka. Vremena poluraspada dobivena prilagodbom i njihove tablične vrijednosti dane su u tablici II. Vrijeme poluživota za 62 Cu je točno određeno na prvu decimalu, dok je dugoživuća komponenta lošije određena. Uzrok većem odstupanju za 64 Cu je kratko vrijeme aktivacije (desetak minuta) i relativno kratko vrijeme praćenja aktivnosti s obzirom na vrijeme poluživota.

Slika 5. Raspad aktiviranog uzorka bakra i pripadna nelinearna prilagodba

Izotop	Izmjereno vrijeme	Tablična vrijednost 6
$^{62}\mathrm{Cu}$	$(9.719 \pm 0.004) \text{ min}$	$(9.74 \pm 0.02) \text{ min}$
$^{64}\mathrm{Cu}$	(13.7 ± 0.7) h	(12.701 ± 0.002) h

Tablica II. Vremena poluraspada izotopa bakra iz nelinearne prilagodbe i pripadne tablične vrijednosti

III.3. Monte Carlo simulacija

Možemo vidjeti da vrijednosti izmjerenog vremena poluraspada bakra ne sadrže tabličnu vrijednost, odnosno čini se da je nepouzdanost podcijenjena. Bolji rezultat bi dobili kad bi ponovili mjerenja više puta i uzeli opću srednju vrijednost. Budući da je takav pristup dugotrajan i zahtijeva često korištenje aparature, nije razmatran u ovom radu, ali je korisno vidjeti princip na simuliranim podacima. Simulacija mjerenja bazirana je na generiranju slučajnih brojeva, tzv. Monte Carlo metodi. Vjerojatnost da se jezgra vremena poluraspada $T_{1/2}$ raspadne u vremenskom intervalu t je

$$p(t) = 1 - 2^{-t/T_{1/2}}.$$
(7)

Simulacija se sastoji od generiranja velikog broja uniformno distribuiranih slučajnih brojeva u intervalu između 0 i 1. Svaki slučajni broj predstavlja jedan atom. Ako je slučajni broj manji od vjerojatnosti p(t) dogodio se raspad. Broji se koliko se raspada dogodilo u danom vremenskom intervalu te se u sljedećem intervalu smanjuje broj početnih atoma za taj iznos.

Ulazni parametri su duljina vremenskog intervala t,
broj vremenskih intervala n, vrijeme poluraspada
 $T_{1/2}$ i početni broj atoma N_0 .

Za simulaciju raspada aktiviranog bakra za vrijednosti vremena poluraspada su uzete vrijednosti iz tablice II. Početni broj oba izotopa procijenjen je iz mjerenja. Na svako mjerenje je napravljena nelinearna prilagodba te je nakon 100 mjerenja izračunata opća srednja vrijednost

Izotop	Vrijeme poluraspada
⁶² Cu	$(9.74 \pm 0.02) \text{ min}$
⁶⁴ Cu	(12.7 ± 0.2) h
⁵³ Fe	$(8.53 \pm 0.05) \text{ min}$
⁵⁶ Mn	(2.578 ± 0.002) h

Tablica III. Vremena poluraspada iz Monte Carlo simulacija

vremena poluraspada.

Za simulaciju raspada aktiviranog željeza pretpostavljeno je postojanje izotopa $^{56}{\rm Mn}$ i izotopa $^{53}{\rm Fe}$ u osnovnom stanju. Analiza je napravljena za 30 simuliranih mjerenja. Rezultati su prikazani u tablici III. Može se vidjeti da nema sistematskih odstupanja od ulaznih vremena poluraspada što je potvrda da algoritam radi dobro. Nepouzdanost za $^{62}{\rm Cu}$ je veća nego kod podatka iz mjerenja i ukazuje koliki je rasap vrijednosti između nezavisnih mjerenja.

Kod aktiviranog željeza, najviše se razlikuje rezultat za 53 Fe, a uzrok je što se zapravo u željezu nalaze i ostali izotopi (npr. 57 Mn i 58 Mn) koji utječu na ukupni rezultat, posebno na kraćim vremenskim skalama, a nisu uključeni u Monte Carlo simulaciju.

Može se vidjeti da su nepouzdanosti za kratkoživuće izotope vrlo bliske tabličnim vrijednostima, dok su kod dugoživućih veće što je pokazatelj da je potrebno veće vrijeme mjerenja da bi se preciznije izmjerila komponenta koja se sporo raspada.

IV. ZAKLJUČAK

Uzorcima bakra i željeza je inducirana radioaktivnost neutronskom aktivacijom koristeći neutrone energije 14.1 MeV generirane D - T reakcijom u elektrostatskom akceleratoru. Nakon aktivacije stopa raspada pojedinog uzorka praćena je scintilacijskim detektorom s digitalnom akvizicijom. Brzi neutroni su u bakru inducirali (n,2n) reakcije kod oba prisutna izotopa, ⁶³Cu i ⁶⁵Cu. Nastale jezgre su pozitronski emiteri pa su scintilacijskim detektorom brojani gama fotoni nastali anihilacijom para elektron pozitron. Prilagodbom funkcije za raspad dvije nezavisne komponente dobivena su vremena poluživota. Slaganje s tabličnim vrijednostima je bolje za kratkoživuću komponentu, ⁶²Cu, jer je vrijeme mjerenja bilo dovoljno dugo u odnosu na vrijeme poluraspada. Da bi se preciznije odredilo vrijeme za ⁶⁴Cu bilo bi potrebno provesti dulje mjerenje i dulju aktivaciju.

Na aktiviranom uzorku željeza je napravljena ista analiza pri čemu se osim očekivanog izotopa ⁵⁶Mn uočio i ⁵³Fe koji unatoč tome što je kratkoživući nije određen vrlo precizno zbog postojanja izotopa koji imaju još kraća vremena poluraspada, a nisu detektabilni zbog veličine koraka pri akviziciji podataka.

Monte Carlo metodom su simulirana mjerenja koristeći

tablična vremena poluraspada i intervale mjerenja iz podataka. Izračunata je opća srednja vrijednost vremena poluraspada iz 100 simulacija raspada aktiviranog bakra i 30 simulacija aktiviranog željeza. Rezultati potvrđuju da je kod 62 Cu nepouzdanost podcijenjena jer se radi o rezultatu samo jednog mjerenja.

Bolje rezultate za dugoživuće izotope bi dobili kad bi od-

- ¹ W. R. Leo, *Techniques for Nuclear and Particle Physics Experiments* (Springer-Verlag Berlin Heidelberg, 1994)
- ² R. B. Firestone, Table of isotopes 8th ed. (Wiley-VCH, Weinheim, 1999.)
- ³ R. Van Ammel, J. Paepen, S. Pomme´, G. Sibbens, *Appl. Radiat. Isot.* 68 2387-2392 (2010)
- ⁴ International Atomic Energy Agency, Handbook on Nuclear Activation Cross-sections, Technical Reports Series (IAEA,

bacili dijelove mjerenja u kojima dominiraju kratkoživuće komponente i kad bi mjerili dovoljno dugo u odnosu na vrijeme poluživota. Za preciznije određivanje kratkoživućih komponenti bilo bi potrebno povećati frekvenciju akvizicije i početi s mjerenjem odmah poslije aktivacije.

Vienna, 1974), p. 95-115.

- ⁵ M. S. Antony, D. Oster, A. Hackem, J. Radioanal. Nucl. Chem., Letters **164** (5) 303-308 (1992)
- ⁶ International Atomic Energy Agency, Handbook on Nuclear Activation Data (IAEA, Vienna, 1987), p. 266-269.