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The phonon spectra of silicon Si and boron nitride (BN) crystals are calculated using Quantum
ESPRESSO. The primitive cell of the Si diamond like crystals involve two atoms, corresponding to
two TO and two TA modes, and one LO and LA mode. At Γ point the optical modes are degenerate.
The diamond like cubic zinc-blende structure of the BN involves two atoms as in the Si case, one
B and one N atom with similar masses. Therefore, resemblances with silicon may be expected in
the phonon spectrum. However, one fundamental difference appears, at Γ point a strong TO-LO
splitting is clearly observed. This is a direct consequence of the polar nature of BN crystals, causing
long-range forces for LO vibrations, which notably complicate calculations. The hexagonal graphite
like BN structure is characterized by the van der Waals interactions between the layers. Because of
these weak bonds between the layers, at Γ point one observes that some of the optical modes have
notably lower frequencies than the others.

I. CRYSTAL PROPERTIES

We have applied DFT calculations, using Quantum
ESPRESSO, to find the dynamical matrixes Dsα,s′α′(~q)
that describe the lattice (phonon) dynamics for a given
wavevector ~q. Here, s and s′ denote different atoms
in the primitive cell, whereas α and α′ denote different
directions of atomic motion. Crystal properties of the
silicon and boron nitride (BN) in the cubic zinc-blende
(diamond like) structure, cBN, and, hexagonal (graphite
like), hBN, structure are obtained in this way.

Since the two crystals, silicon and cBN, share similar
properties, having the diamond like structure, our goal is
to study differences between these two systems. We are
particularly interested in the appearance of the LO-TO
splitting, discussing the interesting question of why this
splitting is observed experimentally for the BN crystals
and not for the silicon crystals.

I.1. DFT calculation

In the first step, the crystallographic structure needs
to be determined. This step then provides the input file
for the SCF calculations. The lattice parameters for each
of the crystals are obtained by looking for the minimal
ground state energy. This minimal energy defines the
equilibrium positions of atoms within the crystal struc-
ture, while phonon excitations represent the harmonic
oscillations of the lattice around this equilibrium posi-
tion.

The dynamical matrixDsα,s′α′(~q) describes the phonon
dynamics for a given wavevector ~q. For example, in the
case of cBN, they are two atoms s and s′ in the primitive
cell. The motion of these atoms involves all the three
dimensions, with α and α′ representing these different
degrees of freedom of each atom.
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For the BN zinc-blende structure, our procedure gives
the value of a =6.74 a.u. for the distances between atoms.
This value is only slightly different from the experimen-
tally observed value, which is according Ref. [1] a =6.83
a. u. In the same way, we find a =10.2 a.u. for the
silicon diamond like cubic structure, and 4.746 a.u. for
the hexagonal boron nitride hBN.

I.2. Dynamical matrix for Si and BN crystals at
~q = 0

For ~q = 0, the phonon is described by a stationary wave
for which the atoms in all the unit cell oscillate in phase.
The analysis of the dynamical matrix, which in general
depend of all three components of the phonon momentum
~q, can be simplified for ~q = 0 by discussing vibrations in
a particular direction. For a direction, let say ~z, we can
consider the equations of motion for the displacements of
the two atoms v1 and v2. The corresponding eigenvalue
problem is given by

[
(Cz)11 (Cz)12
(Cz)21 (Cz)22

] [
v1
v2

]
= ω2

[
m1v1
m2v2

]
(1)

The first useful property of the interatomic force con-
stants C for the analysis of the solutions follows from

the translational symmetry: (Cz)ij = ∂2ε
∂vi∂vj

= ∂2ε
∂v2∂v1

=

(Cz)12. In other words, the matrix in Eq. (2) is symmet-
ric. The dynamical matrix is obtained from the inter-
atomic force constants by the substitution,

D(~q)ij =
1√
MiMj

C(~q)ij

The second useful property follows from physical ex-
pectations for vanishing momenta. Namely, it is well
known that the energy of all acoustic phonon excitations,
irrespectively of the direction and polarization, vanishes
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at ~q = 0. Therefore, one of the eigenvalues given by
Eq. (2) should be zero for the acoustic motion of the two
atoms within the unit cell. Thus, the eiqenvalue problem
in Eq. (2) reduces to the following form:

[
(Cz)11 −a
−a (Cz)22

] [
v
v

]
= 0

where the displacement v is arbitrary. Consequently, one
obtains that

[
(Cz)11 (Cz)12
(Cz)21 (Cz)22

]
=

[
a −a
−a a

]
(2)

where the sign of nondiagonal matrix elements is related
to the fact that the restoring force for the translation of
the whole crystal vanishes.

The properties of the dynamical matrix Dsα,s′α′(~q = 0)
at ~q = 0 are well recognized by Quantum ESPRESSO for
silicon, for which one obtains all the matrix elements to
be the same. For the BN calculations, one obtains the
values of the matrix elements that are very close to each
other:

[
(Cz)11 (Cz)12
(Cz)21 (Cz)22

]
BN

=

[
0.52144 −0.52110
−0.52111 0.52280

]
(3)

While we know that the acoustic modes has the zero
energy at the Γ point, we may now calculate in addition
the frequency of the degenerate optical modes, obtaining
1062 cm−1. This value is very close to the frequency
obtained by the DFT calculation 1078 cm−1.

As our next step, we are interested in the phonon fre-
quency behaviors when we take the limit ~q → 0. Again,
we use Quantum ESPRESSO to calculate the dynamical
matrix for α = α′ = z. For silicon, and approximately
for BN, we observe that the acoustic frequency increases
linearly with ~q near the Γ point, as shown in Fig. 1
and Fig. 2 for the silicon and the cBN, respectively. The
results in Fig. 2 are in very god agreement with Ref. [7].
Similarly, the results for the silicon agree with Refs. [8, 9].

For silicon, we observe from Fig. 1 that the calcula-
tions of the optical mode give the same value in the ~q → 0
limit as for the ~q = 0 point. Furthermore, the two optical
modes are degenerated at ~q = 0. For BN in Fig. 2), there
are some discrepancies. Namely, in this case, we see a gap
opening for ~q = 0. In particular, there is a jump in the
dispersion from 1075 cm−1 to 1307 cm−1 in Fig. 2, which
may be seen by comparing the frequency of the first blue
triangle with others. Our next task is therefore to ana-
lyze this behavior, which is related to the existence of the
long-range polar forces in BN and the LO-TO splitting.
This effect is not present for silicon crystals since there
are no such long-range forces in these crystals.

II. LO-TO SPLITTING

We are interested in the dispersions of the LO and the
TO phonons near the Γ point in systems with long-range
forces. In particular, the origin of the LO-TO splitting in
polar materials is caused by the presence of the macro-
scopic polarization density, generated by the atomic dis-
placement ~vLO and the associated electric fields [11].

II.1. Theoretical background

We may write the Fourier transform of the polarization
density in the form given by

~P (~q) =
e2

Ω

∑
n=0

Zn · ~vLO (4)

Here, e is the elementary charge and Ω is the volume of
the 3D unit cell (or the surface for the 2D unit cell). We
also introduce the tensor of the Born effective charges
Zn, associated with the atom n within the unit cell. If
we consider long-wavelength vibrations of the LO and
TO modes, we observe that they are quite mechanically
similar [11]. On the other hand, if the material is polar,
the LO modes may generate long-range fields that make
them different from TO modes.

Using the Maxwell equations one obtains the follow-
ing expressions for macroscopic (averaged) fields in the
absence of free charges,

~∇ ~D = 0 ⇒ ~q ~Dq = 0 (5)

~∇× ~E = 0 ⇒ ~q × ~Eq = 0 (6)

We see that for longitudinal fields, ~Dq ‖ ~q, Dq should

vanish, ~Dq = 0 = ~Eq + 4π ~Pq. Thus, the LO modes,

which induce an average polarization charge density ~P ,

generate a macroscopic electric field ~E, parallel to the
phonon momentum ~q. On the other hand, for transverse

fields, ~q ⊥ ~E, ~P , Eq. (6) gives ~E = 0, which means that
there are no macroscopic fields. This is the case of the
electric field associated to the TO vibrations, which is
orthogonal to the direction of the phonon momentum ~q.

The Born effective charge describes the atomic re-
sponse to macroscopic field, generating a force opposing
the LO vibration. This effect increases the energy cost
of the displacement for the LO modes in comparison to
the energy needed for the TO modes displacement. Fol-
lowing the analysis given in Ref. [3], one may derive the
relation:

ω2
LO = ω2

TO +Wc(~q)
e2|~q|2

Ω

(∑
n

~e~q · Zn · ~enLO
Mn

)2

(7)
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Figure 1. Phonon dispersion of for silicon along Γ → X → X → Γ → L crystal symmetry lines. As the unit cell involves two
atoms, we expect six different frequencies of vibrations for a given momentum ~q: the three acoustic and the three optical modes.
We see in Γ point, corresponding to ~q = 0, that all the acoustic frequencies and all the optical frequencies are degenerated. As
we move in the reciprocal lattice space, the qx, qy and qz dispersions are no longer equivalent and the phonon modes lose their
degeneracy.

In analogy to Eq. (7), it is possible to derive the corre-
sponding relation for the dynamical matrix,

Dsα,s′α′(~q → 0) = Dsα,s′α′(~q = 0)

+Wc(~q)
4πe2

Ω

(
( ~Zsα · ~q)( ~Zs′α′ · ~q)

~q · ε̂ · ~q

)2

(8)

Here, ε̂ is the dielectric tensor, which can also be calcu-
lated by the DFT calculations.

Using Eq. (8), we may now check the consistency of the
DFT calculations. In particular, for ~q = 0, the dielectric
tensor and the effective charge are obtained as

ε̂ =

4.538 0 0
0 4.538 0
0 0 4.538

 (9)

~ZB = − ~ZN =

1.864 0 0
0 1.864 0
0 0 1.864

 (10)

Using the properties of the dynamical matrix discussed
in Sec. I.2 and taking the average value of the matrix

elements for a in Eq. (2), one obtains the results in the
first column in Table I. The results obtained directly by
Quantum ESPRESSO are given by the second column in
the Table I.

average m.e. QE
Dsα,s′α′(~q = 0) 1062 cm−1 1078 cm−1

Dsα,s′α′(~q → 0) 1290 cm−1 1307 cm−1

Table I. Comparison of the estimate obtained by enforcing the
symmetry of the dynamical matrix and the direct Quantum
ESPRESSO (QE) results.

We see that the differences in Table I are within a rea-
sonable range.

II.2. Interpolation scheme

Since it is time consuming and computer demand-
ing to calculate the dynamical matrix Dsα,s′α′(~q), it is
convenient to calculate this matrix for a set of mo-
menta ~q and to use the interpolation scheme to calculate
Dsα,s′α′(~q) for other momenta ~q. The main idea behind
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Figure 2. Phonon dispersion of the cubic zinc-blende BN between Γ → X → X → Γ → L points. The red color denotes for TO
modes while the blue lines are for the LO modes. As the unit cell used in the calculation has two atoms B and N we expect six
different frequencies of vibrations, the three acoustic and the three optical. We see in Γ point that all the acoustic frequencies
are degenerate while the optical frequencies have a gap between the TO (in red) and LO (in blue) frequencies. The continuous
lines are obtained using Fourier interpolation of the phonon dispersion, while the results denoted by symbols are obtained by
direct calculation.

this approach is that the exact dynamical matrix change
smoothly in ~q space.

That is, in the first step, one needs to calculate the
dynamical matrix for a representative, yet finite set of ~q
points on the grid in the reciprocal space of the crystal.
In the next step, the Fourier transform is taken to calcu-
late the dynamical matrix as a function of the continuous

real space variable ~R,

F (~R) =
∑
~q∈grid

D(~q)ei~q
~R .

In the final step, the dynamical matrix is taken back into
the reciprocal space, assuming that it is well defined for
any values of the wavevector ~q,

D̃(~q) =
1

N

∑
~R

F (~R)e−i~q
~R

Using this particular procedure within Quantum
ESPRESSO, the phonon dispersion of silicon is obtained,
as shown in Fig. 1.

II.3. Phonon dispersion along the crystal
symmetry axis

The problem of modeling crystals that are character-
ized by the LO-TO splitting is that their dynamical ma-
trix, besides the smooth analytical part, involve a non-
analytic part as well. The latter may change rapidly and
become singular as the symmetry point is approached,
~q → 0. Such a kind of behavior we observe in the mod-
eling of the cubic zinc-blende BN structure. In partic-
ular, following Ref. [2] (Eq. (73)), the non-analytic part
of the dynamical matrix in a polarizable crystal can be
described by the following term:

Ñ(~q)βsβ′s′ =
∑
~G 6=0

4π

Ω

(q +G)αZα,βs(q +G)α′Zα′,β′s′
(q +G)αεαα′(q +G)α′

(11)

where we sum over G involves the summation over the
reciprocal lattice vectors ~G. In practice, one sums over a
finite number of vectors of the reciprocal lattice, with the
precision of calculations of Ñ(~q)βsβ′s′ that increases with
the number of vectors taken. In Eq. (11), Ω is the volume
of the system defined by the total number of reciprocal
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Figure 3. Phonon dispersion of hBN along the crystal symmetry lines Γ → K1 → M1 → M2 → A → Γ. The red and the
green color is used for the in-plane modes at Γ point, while the blue curves correspond to the out of plane z modes. Depending
on the direction in the Brillouin zone, we can clearly see the LO-TO splitting for the in-plane modes, particularly near the Γ
point. The other interesting result is the splitting of the two z optical modes along the lines in the plane. However, for the
lines in the z direction, the two modes collapse on each other. Since the unit cell in our calculations involves four atoms: two
B and two N atoms, there are twelve different frequencies of vibrations, corresponding to the six acoustic and the six optical
modes. The continuous curves are obtained using Fourier interpolation, while the triangles are the ~q points obtained by the
direct calculations.

Figure 4. Representation of the six optical modes for ~q = 0 within one unit cell of the hBN crystal. For each of the modes, the
frequency of the phonon vibration is provided as well.

lattice vectors taken into account, whereas εαα′ is the
dielectric tensor and Zα,βs is the effective charge.

In modeling, the non-analytic part is usually treated
separately from the analytical part. That is, once that
the dynamical matrix for the polar crystal is obtained for

a finite number of ~q points on the grid in the reciprocal
space, Dsα,s′α′(~q), the smoothing procedure should dis-
tinguish between the two types of contributions. Namely,
the divergences that characterize the non-analytic part
within an interpolation scheme may be cutoff. There-
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fore, the non-analytic part, which is usually known from
the theoretical considerations, should be removed prior
to smoothing. The remaining short-range contributions
are treated separately and separately smoothed using the
Fourier interpolation scheme. At the end, now the sort-
range contribution define for any momenta and the long-
range nonanalytic contribution are added together.

Using this distinction in the treatment of the short-
range and the long-range contributions, it is possible
to apply Quantum ESPRESSO to calculate the phonon
properties and the phonon dispersions. For the cubic
zinc-blende boron nitride crystals the corresponding re-
sults for the phonon dispersions are shown in Fig. 2. For
the hexagonal boron nitride structure, the phonon dis-
persions are shown in Fig. 3.

II.4. Phonon dispersion for hBN

Besides the cubic zinc-blende BN structure, the hexag-
onal hBN is another crystalline form of the boron nitride
(BN) compound. It has a similar crystalline structure
as the graphene, with 2-dimensional monolayers that are
bound by van der Waals forces. One unit cell of such crys-
tal is composed of 4 atom, as shown in Fig. 4. The atoms
of boron and nitrogen in the same plane are bound by
covalent bonds. The bond length is 0.1446 nm, with the
nitrogen being slightly more negatively charged than the
boron atom. These charges may give rise to long-range
interaction. The bonds between the nitrogen and boron
atoms in two neighboring layers are of van der Waals na-
ture. The length of these bonds is 0.333 nm. Our results
for the phonon dispersion agree well with results obtained
in Refs. [7, 10].

In the case of the silicon diamond structure and cubic
zinc blende BN structure, we see how two atoms in the
unit cell give rises to 6 frequencies. The case of hBN
is particularly interesting, because the weak interaction
between the monolayers should imply almost a full degen-
eracy in the spectrum for some of the 12 phonon modes,
corresponding to the 4 atoms in the unit cell. As it is
expected for the acoustic modes, which are associated to
the translation at ~q = 0, we find frequencies close to zero
for these vibration in the case of the directions ~x and ~y
(parallel to the layer plane). There are two frequencies
for each of these directions. The first one is character-
ized by the movement of all atoms in the same direction.
The second one, which is a bit higher in energy, is char-
acterized by the movement of atoms in the lower layer
in one direction, with atoms in the other layer moving in
the opposite direction. For the acoustic modes, in the ~z
direction, the translation of both layers together has also
a frequency close to the zero value, while the translation
of the two layers in opposite directions results with an
non-zero value, which may be seen close to the Γ point
in Fig. 3, showing the corresponding phonon dispersion
for the hBN. These acoustic modes in the ~z direction
are characterized by a quadratic contributions near the

Figure 5. Values of the two optical frequencies for ~q = 0 and z
direction, as a function of the distance between different layers
in hBN. The x axis corresponds to the double of the distance
between two BN monolayers as there are two monolayers in
one unit cell. The hBN crystal in equilibrium corresponds to
the distance of 0.6661 nm between the layers.

Γ point as well, rather than an linear one, as in the case
for all others acoustic modes.

From Fig. 4 one observes very different energies of exci-
tations for the optical modes of the hBN crystal at ~q = 0.
We can see how the ~z vibrations are energetically lower
than all the others, which may easily be explained by the
weak van der Waals bonds in comparison to the covalent
bonds within the layers. The second observation is again
an almost negligible difference between the two ~x and
~y vibrations, with the in-phase vibrations being slightly
lower in energy than the anti-phase vibrations. The third
observation is that the anti-phase vibrations in ~z direc-
tion are energetically lower than the in-phase vibrations.
Al these details are apparent from the phonon spectrum
calculated in Ref. [7] as well.

While the in phase and in anti-phase vibrations in the ~x
and ~y directions are almost degenerate and can therefore
be only equal for the monolayer optical modes, this is
not the case for the vibrations in the ~z direction. We
therefore vary the distance between the monolayers in
Fig. 5 to show how the both frequencies converge to the
value of the monolayer frequency, the latter being equal
to the in-phase vibration. This leads to the conclusion
that the interaction between the two monolayers in hBN
crystal may lower the phonon energy. Furthermore, using
the phonon dispersion obtained in Fig. 3, we see that the
two ~z frequencies collapse into each other when we are
moving into ~z direction.

II.5. Simplified model of macroscopic fields

In order to discuss the appearance of long-range forces
in polar crystals we may analyze a simplified model. Let
us consider two parallel planes at distance x0, assuming
that the surface charge at one of the plane is equal to σ,
whereas at the other the charge is negative σ. These two
plates represent a capacitor. The corresponding electric
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Figure 6. Infinite stack of capacitors, involving infinite charged plates, with an additional electric field E0 that preserves the
periodicity of the electrostatic potential V (x).

field may be found by inspecting the Gauss law. Between
plates the field is perpendicular to the planes, Ep = σ,
where ε is the dielectric constant. For infinite planes,
outside the capacitor there are no electric fields.

If we now consider an infinite stack of such capacitors
repeated periodically with a period L, as in Fig. 6, using
the Gauss law it easy to see that the field between ca-
pacitors vanishes, whereas the field between plates is the
same as for a single capacitor with the surface charge den-
sity ±σ. In other words, the electrostatic potential V (x)
remain constant between capacitors, with drops between
plates. To obtain a periodic electrostatic potential the
electric field E0 should be added, as in Fig. 6, in a way
that the mean electric field E0 + Ep over the period L
vanishes, E0 = −σ x0/L.

If E denotes the mean electric field (macroscopic field)
and P denotes the mean polarization, P = σ x0/L, as-
suming a linear response, P = χ E, we have

E = E0 + Ep = E0 − 4πP (12)

E0 = (1 + 4πχ)E (13)

where 1 + 4πχ corresponds to the dielectric constant ε,

D = εE . (14)

Thus, E0 in Fig. 6 corresponds to the electric displace-
ment D due to external charges. In other words, the
system in Fig. 6 may be described by periodic electro-
static potential of the period L only in the presence of

external field. For D = E0 = 0 in Fig. 6, corresponding
to LO phonons q ‖ E,D, E = −4πP . Thus, for D = 0,
the macroscopic electric field E is given by mean polar-
ization. E is antiparallel to P , which means that it effec-
tively enhances the restoring force for the LO phonons.

The present simplified analysis shows the difficulties
that appear in the presence of long-range forces in crys-
tals. Because of this forces, one needs to be particularly
careful in calculations with boundary conditions at su-
percell boundaries [3], because the electric polarization
averaged over the supercell is nonzero for incommensu-
rate wavelengths. For similar reasons, one needs to be
careful with monolayers. Namely, the two-dimensional
systems are frequently modeled by repeating periodically
layers (planes), while using a large interlayer distance L
[11]. However, in the presence of long-range forces, the
macroscopic field E, as discussed here, remains finite in
the long wavelength limit.

II.6. TO vibrations in hBN

For hBN, we may use a simplified model to explain the
different behavior of the dispersion of the two ~z frequen-
cies near the Γ point. These frequencies depend, as one
may see from Fig. 7, on the direction of the phonon wave
vector. When the phonon wave vector in in the in-plane
direction (the case shown on the left side of Fig. 7), the
difference in energy of the two ~z modes is significant,.
However, in the case when the phonon wave vector is set
in the ~z direction (the case shown on the right side of
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Figure 7. The detailed observation of the different behavior of the dispersion of the phonon in the in-plane or inter-plane
direction. We are comparing it directly to the model developed in the previous part.

Fig. 7), the energy difference almost vanishes.

In the first case, we cannot apply the discussed model
of capacitors as the phonon waves of the in-layer direc-
tion change the polarization only locally but the average
of the polarization of one layer stays zero. For this rea-
son, this is the case when there are no macroscopic field
created and the calculations for the limit ~q → 0 and ~q = 0
give the same value. In the other case, when the phonon
wave vector is in the ~z direction, a macroscopic polariza-
tion appears. As we can see from Fig. 7, when the two
layers oscillate in the antiphase the global macroscopic
polarization is again zero, as it is zero in the primitive
cell. This explains why there is no change in the energy
of the dispersion of this mode when one approaches the Γ
point from the in-plane direction or inter plane direction.

This situation is different for the mode involving ~z vi-
brations that are in phase between the two layers. In
this case, there is a macroscopic field when the phonon
wave vector is along ~z direction (the LO mode). As a
result, the energy of this mode becomes higher. This can
explain the difference in energy observed for this mode
near the Γ point.

II.7. Comparison with experimental results

While the DFT calculation determines the phonon
dispersion in the whole Brillion zone, traditional spec-
troscopic experiments are limited to the vicinity of the
Γ point. These experiments involve the infrared and
the Raman spectroscopy, using electromagnetic waves
as probes. Because the dispersion of light is given by:
ω = ck, where c is the speed of light, excitations of the
phonon systems by incident wave involve finite frequen-
cies, while the change of the momentum k is infinitesi-
mally small. This is the reason why these measurements
are possible for small ~q of phonons near the Γ point. Nev-
ertheless, this is fully sufficient to observe the LO/TO
splitting effect.

In the case of the infrared spectroscopy, one measures
the spectrum of photon absorptions in the interval of fre-
quencies that is of the same order as the phonon frequen-
cies. The absorption of the incident photon is a result of
an excitation of a phonon of the same wave vector k and
frequency ω. On the other hand, the Raman scattering
uses phonon of high frequencies and measures their in-
elastic scattering with the optical phonons. That is, we
measure the Raman shift between the incident and the
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Figure 8. Phonon-dispersion relations of h-BN [7]. The full
curves show the results of the ab initio force-constant ap-
proach. The symbols at Γ point indicate the Raman and the
infrared data. The open circles represent the HREELS data
for a monolayer of h-BN on the Ni 111 substrate.

transmitted wave, which in return corresponds to the fre-
quency of the phonon with which the light interacts.

If a unit cell has a center of symmetry, depending on
the symmetry of the lattice vibrations, the phonons may
be infrared active or/and Raman active. In the case of
infrared active phonons, the absorption of the photon
induces a dipole momentum. Thus, the corresponding
lattice displacements should involve the dipole momen-
tum for the phonon excitation to be possible. This im-
plies that the positive and the negative charges move in
opposite directions. In the Raman case, it is the polar-
izability that should change. The Raman active modes
may be induced by a displacements of only positive or
negative charges move symmetrically. In this way, the in-
frared and Raman spectroscopy are complementary and
we need to use both of them to obtain the energies of all
phonon modes around the Γ point.

As always, it is particularly important to check the cal-
culations by comparing to available experimental data.
In particular, we may compare our DFT calculations with
the spectra published in Ref. [7] for hBN. The results are
shown on Fig. 8. We may clearly see the agreement of
the DFT calculations with the spectroscopic measure-
ments near the Γ point. In addition, the third kind of
measurements using HREELS, shown in Fig. 8, provides

a larger part of the dispersion between Γ and K points.
These measurements are special, involving a highly colli-
mated monochromatic electron source with a very narrow
energy distribution. In this way the problem of the ex-
tremely sharp photon dispersion is lifted, using electrons
as probes instead of photons. The limitation of HREELS
is that it may be applied for 2D materials in certain crys-
tal directions only. Nevertheless, from Fig. 8 we observe
again a surprisingly good agreement with the DFT cal-
culations, now beyond the proximity of the Γ point.

III. CONCLUSIONS

The lattice properties of silicon and boron nitride crys-
tals are analyzed. In the case of the latter, two struc-
tures are discussed, the first is in the cubic zinc-blende
structure, which is diamond like an similar to the sili-
con. The second is hexagonal graphite like, hBN, with
weak van der Waals bonds between layers. The first task
in modeling the crystal structure is to find the equilib-
rium lattice coordinates, corresponding to the minimal
energy of the crystal. The vibrations around this equi-
librium configuration correspond to the phonon modes,
that we calculated using Quantum ESPRESSO software
package. Using this approach, phonon spectra involv-
ing different acoustic and optical phonon modes are ob-
tained, for transverse and longitudinal polarization. Un-
like for silicon crystals, the spiting between TO and LO
modes is found for BN crystals. This spiting is caused by
different charges at B and N atoms, which are source of
long-range force. It is argued that in the case of the LO
phonon displacements a macroscopical polarization de-
velops, corresponding to an electrical field that enhances
the restoring force for vibrations. This explains why the
LO modes are higher in energies than the TO modes.
Furthermore, it is argued here that the long-range force
represent a separate problem for the phonon calculations,
and should be treated separately from the short-range
force, well capture by standard approaches to the dy-
namical matrix. Out calculated spectra show a very
god agreement with the results in the literature, with
many details discussed separately. It may be concluded
that the numerical approaches and software packages like
Quantum ESPRESSO, when appropriately used, repre-
sent a power tool for calculating the crystal structure and
the phonon spectra, even in the presence of long-range
forces.
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