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2 Ruder Bošković Institute, Bijenička 54, Zagreb 27th January, 2021

Abstract
The XY chain in a transverse magnetic field is studied. Its quantum phase diagram

is explored through fidelity of the ground state, an overlap function. This approach
is based on phase transitions inducing a critical drop of the fidelity. The XY model
is solved exactly, in the sense that the spectra, ground states in both parity sectors
and elementary excitations are found. Two algorithms are used for determining the
solution and their equivalence is proved; both relying on mapping the model to
free fermions. Fidelity of the ground state is introduced and calculated numerically,
correctly identifying quantum phase transitions of the model.

1 Introduction

The one-dimensional XY model in a transverse magnetic field, as a generalization of the
Ising model, is a prototypical quantum mechanical model for magnetic-orderings in spin systems.
It is interesting in a couple of ways; not only is it exactly solvable but it has an intriguing phase
diagram which holds two non-trivial quantum phase transitions. Quantum phase transitions
(QPTs), unlike classical phase transitions which are caused by thermal fluctuations, are caused
by quantum fluctuations at absolute zero temperature. Although absolute zero is not achievable,
even in principle, quantum phase transition properties can be detected in a system’s behaviour
near the critical point. QPTs can shed a light on exciting phenomena such as high-temperature
superconductivity and offer a new perspective on treating (strongly) interacting quantum
many-body systems. Furthermore, they can often be mapped to other problems, enabling us
to reach a solution in a simpler manner, or even at all. For example, the two mentioned QPTs
in the 1D XY model’s phase diagram correspond to two universality classes; a free fermion
system and the 1D quantum Ising model, respectively[1]. Last but not least, 1D models are
experimentally achievable through, for example, trapped cold atoms in optical lattices[2, 3].

An interesting phenomena can occur in a XY chain under the right circumstances. First,
picture an antiferromagnetic, square ”chain” with four spins in its vertices. To satisfy
antiferromagnetic conditions, all one needs to do is alternately put spins up or down, as shown
on Figure 1a). In another setting, for example a triangle, when the same is tried, one finds
it is impossible. We say the system is frustrated as it cannot meet its boundary conditions
(point neighbouring spins in opposite directions). If a XY chain is closed, or has periodic
boundary conditions, is antiferromagnetic and has an odd number of spins (i.e. lattice sites),
it will experience frustration. At first, it seemed that this is a small effect that can be ignored,
especially as the the chain becomes longer, as it stems from a single spin too many(or too
few) but it turned out not to be the case. For example, it has been shown that under these
conditions, a quantum phase transition can be observed which is not present in unfrustrated
systems[4].

A novel way of approaching this problem is through fidelity analysis. Fidelity, a concept
borrowed from quantum information theory, is a measure of ”closeness” of two quantum states.
One can think of it as an overlap function. It has been found that the boundaries between
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Fig. 1. A schematic depiction of frustration in a closed ”chain” system. In a) we can see a
normal antiferromagnetic system, where in b) the system cannot meet its boundary conditions.

different quantum phases can be analysed through the overlap between ground states (GSs)
of systems with slightly differing coupling constants[5]. At critical points, the overlap shows
a large, sometimes discontinuous drop. The virtue of this approach is in its generality; no a
priori knowledge is needed of the system’s specific physical properties (e.g. order parameters).

We use fidelity to reconstruct and analyse the quantum phase diagram of a 1D quantum
XY model, for an even number of spins, providing a base for the next step which is expanding
this analysis to the frustrated case.

First, in Section 2 we solve the XY chain using a series of transformations to bring it to
diagonal form, find its spectra and ground state(s). In Section 3, a short overview of the
relevant phase diagram for the XY model is given. Finally, in Section 4 a definition of fidelity
is given, along with an alternative solution for a quadratic fermion model as it is relevant
for fidelity calculations. Also in Section 4, a numerical algorithm is introduced and results of
fidelity calculations are presented.

2 Solving the quantum XY model

The XY chain was introduced as an exactly solvable model similar to the Heisenberg model
by Lieb, Schultz and Mattis in 1961 [6], where it was solved in the absence of a magnetic field.
Works including a finite magnetic field apperead soon after[7, 8]. The problem is solved by
mapping the chain to a system of free fermions. The XY Hamiltonian with anisotropy γ in a
transverse magnetic field of strength h in terms of Pauli spin operators reads:

H =
J

2

N∑
j=1

(
1 + γ

2
σxj σ

x
j+1 +

1− γ
2

σyjσ
y
j+1 + hσzj

)
. (2.1)

In a system described by this Hamiltonian, there is a 1D lattice with N sites, and on each
site there is a 1/2 spin with projections in 3 directions (x, y, z). In the presence of a magnetic
field, the interaction between neighbours in the direction of the external magnetic field can be
neglected. In (2.1), that direction is z. For γ = 0 the system reduces to a isotropic XX model,
where for γ = ±1, one gets the 1D quantum Ising model.

2.1 Jordan Wigner transformation

Jordan-Wigner transformation is a mapping of spin operators to fermionic creation and
annihilation operators. By transforming N spins to N fermions, we get a Hamiltonian that
can be further simplified, in the end giving us a clean diagonal quadratic fermion Hamiltonian
whose ground state and energy are easily acquired.
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It is convenient to write Hamiltonian (2.1) using Pauli raising and lowering operators:

σ+,− =
1

2
(σx ± iσy). (2.2)

Then, (2.1) reads (h.c. stands for the hermitian conjugate of the expression in brackets) :

H =
J

2

N∑
j=1

[
(σ+

j σ
−
j+1 + γσ+

j σ
+
j+1 + h.c.) + hσzj

]
. (2.3)

Reviewing the known properties of Pauli spin operators, we can see they are not Fermi
operators:

[σαj ,σ
β
j ] = 2iεαβγ σ

γ
j , (2.4a)

[σαi ,σ
β
j ] = 0 for i 6= j. (2.4b)

{σαj ,σ
β
j } = 2δαβ, (2.4c)

(2.4d)

Latin letters i, j stand for particular sites, while Greek letters α, β, γ stand for x, y or z. εαβγ
is the Levi-Civita symbol and δαβ the Kronecker delta. As these relations show, Pauli spins
satisfy fermionic anti-commutation relations only on a particular site (2.4c), while between
different sites they act bosonically. Furthermore, it can be shown (using (2.2) and (2.4)) that
the set of operators σ−j , σ

+
j and σzj is also not a set of Fermi operators.

That is why we introduce the Jordan-Wigner transformation for the XY model; the Fermi
annihilation and creation operators are, respectively:

ψj =

(
j−1∏
l=1

σzl

)
σ+
j , (2.5a)

ψ†j =

(
j−1∏
l=1

σzl

)
σ−j , (2.5b)

for j = 1, 2, ..N . The product
∏

is used in place of tensor product symbol ⊗ for simplicity.
Using the definition of these Fermi operators and properties of Pauli operators, it can be shown
that ψj and ψ†j are Fermi operators:

{ψi, ψj} = 0, (2.6a)

{ψi, ψ†j} = δij. (2.6b)

This system’s Hilbert space is a tensor product of N spin 1/2 Hilbert spaces, and its basis
are product spin states |n1〉 ⊗ |n2〉 ⊗ ... |nN〉 or shortly |n1 n2...nN〉. The ni stands for ↑ or ↓.
If we identify ↑ with 0 and ↓ with 1, and use σz |↑〉 = |↑〉 and σz |↓〉 = − |↓〉, it follows:

ψ†jψj = nj |n1 n2...nj...nN〉 . (2.7)
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As it naturally stems from (2.5), spin downs ↓ correspond to particles and spin ups ↑ to
holes. It is convenient to define also the inverse relations for Pauli operators in terms of Fermi
operators for j = 1, .., N :

σzj = 1− 2ψ†jψj, (2.8a)

σ+
j =

(
j−1∏
l=1

1− 2ψ†lψl

)
ψj, (2.8b)

σ−j =

(
j−1∏
l=1

1− 2ψ†lψl

)
ψ†j . (2.8c)

Applying (2.8) to (2.3) we obtain:

H =− J

2

N−1∑
j=1

(
ψjψ

†
j+1 + γψjψj+1 + h.c.

)
+
J

2
P
(
ψNψ

†
1 + γψNψ1 + h.c.

)
− Jh

N∑
j=1

ψ†jψj +
1

2
JNh.

(2.9)

We isolated the j = N case because defining a ψN+1 operator would tamper with the Fermi
commutation relations. We also introduced the Hermitian parity operator:

P =
N∏
l=1

σzl =
N∏
l=1

(
1− 2ψ†lψl

)
. (2.10)

The parity operator simply gives a plus (minus) sign on a state with even (odd) number of
particles. Since the Hamiltonian (2.9) only has terms quadratic in Fermi operators (they come
in pairs such as ψiψj), the number of particles also only changes in pairs. Therefore, the
Hamiltonian commutes with the parity operator [H,P ] = 0. We see that (2.9) is not quadratic
in Fermi operators, but if we separate our problem into two sectors based on parity P, we will
have a quadratic form Hamiltonian in each sector, bringing us closer to the final diagonal form.
We can do this by writing the Hamiltonian (2.9) as follows:

H =
1 + P

2
H+ +

1− P
2

H−. (2.11)

Explicitly, H+ and H− are equal to (2.9), substituting P with ±1:

H± =− J

2

N−1∑
j=1

(
ψjψ

†
j+1 + γψjψj+1 + h.c.

)
± J

2

(
ψNψ

†
1 + γψNψ1 + h.c.

)
− Jh

N∑
j=1

ψ†jψj +
1

2
JNh,

(2.12)

Also, now there is a convenient way to define ψN+1 that will allow us to write (2.12) in a more
concise way:

ψN+1 |P = 1〉 = −ψ1 |P = 1〉 , (2.13a)

ψN+1 |P = −1〉 = ψ1 |P = −1〉 , (2.13b)
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brings us:

H± = −J
2

N∑
j=1

(ψjψ
†
j+1 + γψjψj+1 + h.c.)− Jh

N∑
j=1

ψ†jψj +
1

2
JNh. (2.14)

2.2 Fourier transform of Fermi operators

We can define new operators ψq that play a role of a Fourier transform(for confirmation
and informal proof see Appendix A.1):

ψq :=
1√
N

N∑
l=1

ψle
−i 2π

N
ql, (2.15)

for any q ∈ XN , with XN = {x0, x0 + 1, x0 + 2, ..., x0 + N − 1} and x0 = 1/2 in the even
sector and x0 = 0 in the odd sector. These operators are periodic with period N ψq = ψq+N
so we can technically talk about all q ∈ XN + Z. It can be shown using (2.15), (2.6) and
(A.1) that ψq are also Fermi operators:

{ψq, ψq′} = 0 (2.16a)

{ψq, ψ†q′} = δqq′ (2.16b)

Now, using (2.15), (2.16) and (A.1) we obtain the following:

N∑
j=1

ψ†jψj+1 =
∑
q

ψ†qψqe
i 2π
N
q, (2.17a)

N∑
j=1

ψ†jψ
†
j+1 =

∑
q

ψ†qψ
†
−qe

i 2π
N
q = i

∑
q

sin

(
2π

N
q

)
ψ†qψ

†
−q, (2.17b)

N∑
j=1

ψ†jψj =
∑
q

ψ†qψq, (2.17c)

Furthermore, we will redefine ψq by adding a phase factor (not harmful to Fermi relations
(2.16)) to get rid of the imaginary unit:

ψq :=
eiπ/4√
N

N∑
l=1

ψle
−i 2π

N
ql. (2.18)

We now have Hamiltonians (2.14) in a form that is simpler to diagonalize:

H± = J
∑
q

[
cos

(
2π

N
q

)
− h
](

ψ†qψq −
1

2

)
+

1

2
Jγ
∑
q

sin

(
2π

N
q

)(
ψ†qψ

†
−q + ψ−qψq

)
.

(2.19)
An extra term −J

2

∑
q cos 2π

N
q = 0 was added for aesthetic reasons.
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2.3 Bogoliubov transformation

Bogoliubov transformation is a transformation that can be thought of as essentially a
rotation of phase space which allows us to change Hamiltonian basis to one in which the
Hamiltonian is diagonal. In the process, it will give us new creation and annihilation operators
which will tell us the structure of the elementary excitations in our system. It will be the final
step that will bring us to the free fermionic Hamiltonian in diagonal form.

The last formulation of Hamiltonians (2.19) can now be written in simple matrix notation:

H± = −1

2
J
∑
q

(
ψ†q ψ−q

)
Mq

(
ψq
ψ†−q

)
, (2.20)

where Mq are 2× 2 symmetric matrices:

Mq =

(
h− cos

(
2π
N
q
)

−γ sin
(

2π
N
q
)

−γ sin
(

2π
N
q
)
−
[
h− cos

(
2π
N
q
)] ) =

(
aq bq
bq −aq

)
, (2.21)

with coefficients:

aq := h− cos

(
2π

N
q

)
, (2.22a)

bq := −γ sin

(
2π

N
q

)
. (2.22b)

It is obvious that the matrix Mq is diagonal for q = 0 in the odd sector, while for q = N/2
it depends on the parity of N. Let us examine the case(s) when q 6= 0, N/2. In this case(s)
the matrix Mq is not diagonal but it is symmetric so it can be diagonalized by an orthogonal
matrix Oq:

Mq = OT
q DqOq, (2.23)

with Dq being a diagonal matrix. We can define Oq as a rotation matrix:

Oq =

(
cos θq − sin θq
sin θq cos θq

)
, (2.24)

which allows us to write:

Oq

(
ψq
ψ†−q

)
=

(
cos θqψq − sin θqψ

†
−q

sin θqψq + cos θqψ
†
−q

)
. (2.25)

Since the columns of OT
q are the eigenvectors of Mq, we get the expressions for cos θq and

sin θq by solving the eigenvalue problem for the matrix Mq (2.21). By this procedure we will
also get the diagonal matrix Dq. Here are the results:

cos θq =
bq

√
2
√
a2
q + b2

q − aq
√
a2
q + b2

q

, (2.26a)

sin θq =
aq −

√
a2
q + b2

q
√

2
√
a2
q + b2

q − aq
√
a2
q + b2

q

, (2.26b)
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and

Dq =

(
Λq 0
0 −Λq

)
(2.27)

with Λq:

Λq := Λ

(
2π

N
q

)
:=

√[
h− cos

(
2π

N
q

)]2

+ γ2 sin2

(
2π

N
q

)
. (2.28)

Now, looking at (2.25) and considering the property cos θ−q = − cos θq, sin θ−q = sin θq we
can see it is convenient to define operators:

χq ≡ cos θqψq − sin θqψ
†
−q, (2.29)

because then we have:

Oq

(
ψq
ψ†−q

)
=

(
χq
−χ†−q

)
. (2.30)

It can be shown that operators χq are also fermionic (see discussion for special cases q = 0, N/2
in Appendix A.2, along with definition of χq in special cases) and periodic with period N:

{χq, χq′} = 0 (2.31a)

{χq, χ†q′} = δqq′ . (2.31b)

By reformulating the Hamiltonian (2.19) using operators (2.29) we finally get a diagonal free
fermion Hamiltonian:

H± = −J
∑
q

Λq

(
χ†qχq −

1

2

)
. (2.32)

2.4 Ground state and energy spectrum

The next and final step in solving the XY model is finding its spectra and ground state. We
will focus on the ferromagnetic case and take the coupling constant to be negative J = −1,
as we are not dealing with frustration yet. Before starting, it is important to remind ourselves
that the Hamiltonian from 2.3 is actually two Hamiltonians, H+ and H− and the Hamiltonian
that describes our system is actually (2.11). To solve the full Hamiltonian, we need to solve
both H+ and H−. Each of them have 2N eigenstates, but as they go into the full Hamiltonian
only if they satisfy the parity condition, and that happens half the time for the respective
H+,−, in the end we will have 2N−1 + 2N−1 = 2N eigenstates for the full Hamiltonian, exactly
as we should.

As mentioned, we will look separately at the even and odd sector. We start with the even
sector. The ground state of the H+ Hamiltonian is its vacuum state, we’ll label it by |GS+〉:

χq |GS+〉 = 0 for any q ∈
{

1

2
,
1

2
+ 1, ...,

1

2
+N − 1

}
. (2.33)
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As we can see from (2.32), the ground state energy is given by:

E+
0 = −1

2

N−1∑
q=0

Λq+1/2. (2.34)

We need to find the explicit expression for the ground state. We start by using operators
(2.18) and their property:

ψq |0〉 = 0 for any q. (2.35)

By expanding this equation using (2.31), and using properties of sin θq and cos θq, we get:

χq(cos θq + sin θq ψ
†
qψ
†
−q) |0〉 = 0. (2.36)

Given equation (2.36), one can check that the ground state of the even sector Hamiltonian
H+, normalized, is:

|GS+〉 =

⌊
N
2

⌋
−1∏

q=0

(
cos θq+1/2 + sin θq+1/2 ψ

†
q+1/2ψ

†
q+1/2

)
|0〉 . (2.37)

As we can see, the operators ψq occur in pairs. By the definition (2.18), that means that ψj
also occur in pairs, which leads to |GS+〉 (2.37) having even parity. An even parity ground
state in the even sector means (2.37) is also an eigenstate of the Hamiltonian (2.11).

We continue with the odd sector. We can start like in the even sector, but we will brand
the vacuum state as |GS∗〉 for reasons that will become clear later:

χq |GS∗〉 = 0 for any q ∈
{

0, 1, ..., N − 1
}
. (2.38)

As now we have a q = 0 term, we need to separately look at cases h < 1 and h > 1 according
to the definition for χq in the q = 0 case (A.4). In the h > 1 case we have an analogous
situation to the even sector with (2.36), and the ground state for the Hamiltonian H− for
h > 1 is:

|GS∗, h > 1〉 =

⌊
N−1

2

⌋∏
q=0

(
cos θq + sin θqψ

†
qψ
†
−q

)
|0〉 . (2.39)

As this is essentially the same expression as the ground state of the even sector (2.37), it also
has even parity, which means that it is not an eigenstate of the full Hamiltonian (2.11) as it
gets canceled by the operator 1− P . Therefore, to find the eigenstate of the full Hamiltonian,
we need to add an excitation. If we minimize the expression (2.28) we get that the lowest
energy excitation is for q = 0, so the common eigenstate of the odd sector and full Hamiltonian
with the lowest energy is gained by adding an excitation at q = 0 to (2.39):

|GS−, h > 1〉 = χ†q=0 |GS∗, h > 1〉 = ψ†q=0

⌊
N−1

2

⌋∏
q=0

(
cos θq + sin θqψ

†
qψ
†
−q

)
|0〉 . (2.40)
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For h < 1, with a little manipulation of (2.36), we get the state (2.38) in the form:

|GS∗, h < 1〉 = ψ†q=0

⌊
N−1

2

⌋∏
q=0

(
cos θq + sin θqψ

†
qψ
†
−q

)
|0〉 . (2.41)

The parity of (2.41) is odd, as it should be so:

|GS∗, h < 1〉 = |GS−, h < 1〉 . (2.42)

Finally, the common odd sector and full Hamiltonian eigenstate with the lowest energy, for
any magnetic field h, is given by:

|GS−〉 = ψ†q=0

⌊
N−1

2

⌋∏
q=0

(
cos θq + sin θqψ

†
qψ
†
−q

)
|0〉 . (2.43)

The corresponding energies are:

E−0 =


−1

2

∑N−1
q=0 Λq for h ≤ 1

−1
2

∑N−1
q=0 Λq + (h− 1) for h ≥ 1.

(2.44)

This concludes the solving of the XY model. The rest of the eigenstates can be reached by
applying the creation operators χq in pairs, on states (2.37) and (2.43).

3 Phase diagram

The phase diagram of the 1D XY model at zero temperature, described by the Hamiltonian
(2.3) is parametrized by γ and h. γ is the aforementioned anisotropy parameter which speaks
of the relative strength of coupling in x and y spin components. h is the parameter describing
the strength of the external magnetic field that is directed along the z-axis. Since the other
cases can be easily determined using the system symmetries it is enough to examine only
the quadrant (y ≥ 0, h ≥ 0), . It is easy to see that by a π/2 rotation along the z-axis, a
γ → −γ equivalent transformation is achieved, whereas a spin reflection across the x-y plane
corresponds to h→ −h.

As was mentioned in Section 1, this phase diagram contains two non-trivial quantum phase
transitions. One is located on the γ = 0 line for |h| ≤ 1 and belongs to the universality class
of the isotropic XX model (Heisenberg chain), as can be seen from the Hamiltonian (2.3). It
corresponds to free fermions aligning on a lattice. The other transition is an Ising transition,
along the critical line h = 1. The diagram is shown in Figure 2.
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Fig. 2. Phase diagram at T=0 for the 1D XY chain. The γ = 0 line matches the XX model,
and it is critical for |h| ≤ 1. The γ = 1 line corresponds to the Ising model and it intersects
the critical h = 1 line.[9]

4 Fidelity

Fidelity is, as introduced in Section 1, is a function of overlap between two quantum states.
Given two quantum states described by density operators ρ and σ, fidelity is defined as [10]:

F (ρ, σ) := tr
(√

ρ1/2σρ1/2
)
. (4.1)

In the case of pure states, (4.1) reduces to the overlap between two states. Given ρ = |ψZ〉 〈ψZ |
and σ = |ψZ̃〉 〈ψZ̃ |, the fidelity of pure states is then:

F (Z, Z̃) = | 〈ψZ |ψZ̃〉 | (4.2)

By noting that these fermionic states must be coherent (after all, the Hamiltonian (2.32)
is essentially a Hamiltonian of N independent quantum harmonic oscillators), we can motivate
writing the ground state of a XY chain as a(n) (unormalized) Gaussian state |ψZ〉:

|ψZ〉 = exp

(
1
2

N∑
i,j=0

c†iGijc
†
j

)
|0〉 . (4.3)

The state |0〉 is the vacuum state ci |0〉 = 0, where ci’s are fermionic operators. G is a N ×N
anti-symmetric matrix that is obtained through a different algorithm of solving the XY chain
(the whole class of free fermion systems, to be exact). Let us justify this expression of the
ground state (4.3) and show it is equivalent to the ground state with even parity (2.37). We
will also keep the number of particles/spins N to be even. The odd parity state, as well as
odd N, are a bit more complicated and are left as the next step after this work.
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4.1 Different solving algorithm for XY chain

It might be the most clear to start with a reduced version, notation wise, of the starting
Hamiltonian, as the process is general and does not depend on our specific factors. We can
write the general quadratic Hamiltonian as:

H =
N∑
i,j

c†iAijcj + 1
2

N∑
i,j

(
c†iBijc

†
j + h.c.

)
. (4.4)

The ci’s (c†i )’s are the annihilation (creation) operators, A and B are N ×N real, symmetric
and anti-symmetric matrices respectively. There is a real matrix Z defined by:

A =
Z + ZT

2
, B =

ZT − Z
2

⇒ Z = A−B. (4.5)

Solving the eigenvalue equation:

ZZ†Φ = Λ2Φ, Λ =
√

Λ2 = diag(Λ1, ..,ΛN), (4.6)

with Λ being a diagonal matrix with single-particle energies as its elements, and Φ a matrix
consisting of eigenvectors for every Λi, we get the energy spectra and its corresponding
eigenvectors in form of Φ. We get another matrix Ψ solving:

ΛΨ = ΦZ. (4.7)

Now we can define matrices g and h:

g =
Φ + Ψ

2
, h =

Φ−Ψ

2
. (4.8)

Elements of these matrices are coefficients to a canonical linear transformation which would
transform the Hamiltonian (4.4) into a diagonal form.
The matrix G from expression (4.3) is now obtained from the equation:

gG+ h = 0. (4.9)

With a little bit of algebra, and a convenient shorthand ΛΦ := Φ−1ΛΦ, it follows:

G =
Λ−1

Φ Z − I
Λ−1

Φ Z + I
=
T − 1

T + 1
=
T 1/2 − T−1/2

T 1/2 + T−1/2
. (4.10)

It is also important to notice that by manipulating (4.6) slightly it is obvious that the newly
defined matrix T := Λ−1

Φ Z is the unitary part of the polar decomposition of Z: Z = ΛΦT .

4.2 Ground state equivalence

The matrix G can be brought, by unitary transformation U, to a block diagonal form[11]:

G = U(0N−2M ⊕GD)UT , GD = i⊕Mν=1 tνσ
y
(ν), (4.11)

where 0L−2M is a null matrix of dimension N − 2M , σy(ν) is a Pauli matrix acting on a 2D
space of two single-particle modes ν and −ν, and tν 6= 0 is real. ν and −ν are used as a
counting mechanism, as we’re counting in pairs/every other indice. A counter with even and
odd indices also could have been used.
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If we allow tν = 0, we can reduce the notation to G = UGDU
T with the sum over ν now

going to N/2 and just keep the first N − 2M tν zero. In this moment it is important to
remind ourselves that this procedure is valid for only the even sector, and only for even N. An
odd number of rows would make this more complicated as tν ’s obviously come in pairs.
Starting from (2.39), using the fact that in the XY chain only neighbours interact i = j ± 1
and the decomposition of G (4.11) in the discussed form, a little bit of algebra gets us the
following expression:

|ΨZ〉 = ⊗N/2ν=1

[(
1 + t2ν

)−1/2 |00〉ν,−ν + tν
(
1 + t2ν

)−1/2 |11〉ν,−ν
]
. (4.12)

This form is normalized; factor (1+tν)
−1/2 comes from the norm. Now, we need to find out what

is tν equal to. First, from the block form, we know that the spectre of G is Sp(G) = {±itν}N/2ν=1.
Furthermore, since T is unitary, we can write its spectra as Sp(T ) = {eiθµ}. Using (4.10) we

see that we can also write the spectra of G as Sp(G) = {itan (θµ/2)}N/2µ=1.

Applying another property of unitarity, we can write T as T = eK , with K an anti-symmetric
matrix. Then we can decompose it like G: KD = UTKU = ⊕N/2ν=1iθνσ

y
(ν). Just like tν , θν ∈ R.

It follows that Sp(T ) =
{

e±iθν
}N/2
ν=1

and tν = tan (θν/2), which plugged into (4.12) gives:

|ΨZ〉 = ⊗N/2ν=1 [cos (θν/2)|00〉ν,−ν + sin (θν/2)|11〉ν,−ν ] . (4.13)

If we applied the operators of creation in (2.37), and redefined θq → θν/2, we would have
this form (4.13). Here, a ⊗ symbol was used (unlike in Section 2) because it was necessary to
emphasise the blocks of matrices used.

4.3 Calculating fidelity

Fidelity in form (4.2) is not very practical. Considering the fact that this system’s ground
state is coherent (which we’ve motivated in Subsection 4.1), we can write the fidelity in the
following form [12]:

F (Z, Z̃ = 〈ΨZ̃ | ΨZ〉 =
det
(
I +G†G̃

)1/2

det (I +G†G)1/4 det
(
I + G̃†G̃

)1/4
. (4.14)

It is possible to further simplify this form [5] to get:

F (Z, Z̃) =

∣∣∣∣ det
T + T̃

2

∣∣∣∣1/2 (4.15)

Comparing (4.4) and (2.11), we construct matrices A and B. Following the algorithm
described in Subsection 4.1, we are able to procure T we need for calculating fidelity according
to equation (4.15). As demonstrated in 3, it is enough to examine behaviour for h ≥ 0, γ ≥ 0.
We varied γ in range γ = [−0.2, 1.0] and h in range h = [0.0, 1.2]. The reason for going
slightly into negative values for γ is the fact that we expect interesting behaviour at γ = 0.
We used the numpy package from Python for calculations.
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4.4 Results

Graphs showing fidelity of XY chain for even number of particles (N) in the even sector are
seen in Figures 3 and 4.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
h

0.980

0.985

0.990

0.995

1.000

F

= 1.0

N = 20
N = 40
N = 60
N = 80
N = 100

Fig. 3. Fidelity for γ = 1.0 in range h = [0.0, 1.2]. A clear dip is seen at h = 1.0 that
increases with increasing N.

The numerical results perfectly coincide with expected phase transitions (See Figure 2).
As can be seen in Figure 3, by varying h for γ = 1.0 we can clearly see a dip for h = 1.0,
corresponding to the Ising transition, as mentioned in Section 3. The dip would also show for
other values of γ, but γ = 1.0 is chosen as it matches the Ising model. On the other hand,
Figure 4 shows fidelity calculated by varying γ. There is also a distinct dip of fidelity at γ = 0,
corresponding to a transition to XX model. h is taken to be h = 0.5, but fidelity would show
the same behavior for any |h| ≤ 1. Both graphs display that the dip sharpens and increases
with increasing N. This is a signature of the fact that in the thermodynamic limit N →∞
this dip becomes a real discontinuity.
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Fig. 4. Fidelity for h = 0.5 in range γ = [−0.2, 1.0]. A clear dip is seen at γ = 0.0 that
increases with increasing N.

5 Conclusion

In conclusion, in this work, we have analyzed the ground-state fidelity for the unfrustrated
1D XY model. As was expected, such a quantity remains near to 1 except for the values
close to the quantum critical points, i.e. for h = 1 and/or for γ = 0, in which it reaches a
minimum that becomes deeper and deeper as the number of the spins of the system increases
hence signaling the presence of a critical region. As it is well known in the literature [13, 14]
this kind of behavior is shared by all gapped spin models and, as well as the existence of a
local order parameter of the Ginzburg-Landau theory, it is assumed to be independent of the
particular choice of the boundary conditions. However, in the last year, such independence
was challenged by several studies on topologically frustrated one-dimensional spin models that
have unveiled new phases that have no counterparts in the associated unfrustrated models[4,
15]. In this optics, in the future, our target is to extend the analysis presented in this work to
frustrated models with the goal to unveil the different structures of the ground-state manifold
between frustrated and unfrustrated systems.
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A Appendix

A.1 Fourier transform operators

If we notice that:

x0 ∈ Z⇒ 1

N

∑
x∈XN

ei
2π
N
xn =

{
1, n = kN, k ∈ Z
0, else

x0 = 1
2
⇒ 1

N

∑
x∈XN

ei
2π
N
xn =

{
(−1)k, n = kN, k ∈ Z
0, else

(A.1)

We can write the operator ψj for all j = 1, .., N like:

ψj =
N∑
l=1

[
ψl

1

N

∑
x∈XN

e
2π
N
x(j−l)

]
. (A.2)

It is not important what we take for x0, an integer or 1/2. However, by choosing x0 = 1/2
in the even sector and x0 = 0 in the odd sector, we’re able to continue with periodic boundary
conditions and define ψN+1 in line with (A.2). Now we see why it’s convenient to define
operators ψq like (2.15) and why we call them Fourier transform of ψj.

A.2 Special cases operator definitions

It is sometimes convenient to rearrange equations (2.26) into a different form:

tan 2θq =
γ sin

(
2π
N
q
)

h− cos
(

2π
N
q
) , (A.3a)

ei2θq =
h− cos

(
2π
N
q
)

+ iγ sin
(

2π
N
q
)√[

h− cos
(

2π
N
q
)]2

+ γ2 sin2
(

2π
N
q
) . (A.3b)

For example, in the case when q = 0 or N/2, the matrix (2.21) is already diagonal and
(2.26) are not well defined. Therefore, we simply define operators χq so (A.3b) is fulfilled
and take any cos θq and sin θq that are consistent with that. The suitable definition of χq for
q = 0, N/2 then is:

χq=0 :=

{
ψ†q=0, for h < 1
ψq=0, for h > 1.

(A.4)

χq=N/2 := ψq=N/2. (A.5)
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