Isingov model pomoću kompleksnih mreža

Ivo Duvnjak

PMF-Fizički odsjek, Bijenička c. 32, 10 000 Zagreb

Sažetak

Cilj rada je bio upoznati i bolje istražiti svojstva i primjenu kompleksnih mreža u opisu realnih sustava sa faznim prijelazima. U radu smo razmotrili Isingov model i interakciju magnetskih dipolnih momenata, te smo modelirali njihove interakcije pomoću dvije kompleksne mreže koje se međusobno natječu. U numeričkim simulacijama interakcija u sustavu smo dobili fazni dijagram, u ovisnosti o parametrima mreže.

1 Isingov model

Isingov model je matematički model feromagnetizma u statističkoj fizici. Radi se o sustavu spinova gdje međusobno interagiraju samo prvi susjedi. Svaki spin može biti usmjeren samo u +z ili u-z smjeru (gore ili dolje). Energija interakcije susjednih spinova je

$$E_{12} = -J_{12}\sigma_{z,1}\sigma_{z,2} \tag{1}$$

gdje je J_{12} snage interakcije.

U našem pojednostavljenom slučaju mi ćemo isključiti djelovanje vanjskog polja, pa je ukupni Hamiltonijan našeg sustava

$$H = -\sum_{i,\delta} J_{i,i+\delta} \sigma_i \sigma_{i+\delta} \qquad (2)$$

Ovisno o iznosu $J_{i,i+\delta}$ imamo

• $J_{i,i+\delta} > 0$, interakcija je feromagnetska

- $J_{i,i+\delta} < 0$, interakcija je antifeormagnetska
- $J_{i,i+\delta} = 0$, spinovi ne interagiraju

U feromagnetskom Isingovu modelu susjedni spinovi žele biti istog usmjerenja, pa su i te konfiguracije vjerojatnije, dok u antiferomagnetskom Isingovom modelu susjedni spinovi žele biti suprotnog usmjerenja. Mi ćemo probati napraviti model interakcije susjednih spinova u kompleksnim mrežama.

2 Kompleksne mreže

Model kompleksnih mreža nam omogućava proučavanje i opisivanje veza između diskretnih objekata. Diskretni objekti su vrhovi koji su međusobno povezani i na taj način čine graf sustava. Primjer je na slici 1. Jako je pogodno za opisivanje kompleksnih sustava, zbog toga smo se i odlučili napraviti simulaciju interakcija Isingovog modela u kompleksnim mrežama.

Slika 1. Primjer kompleksne mreže koja se sastoji od diskretnih objekata koji su međusobno povezani u različite konfiguracije

Prvo je potrebno generirati mrežu sa jedinstvenom konfiguracijom, kojoj ćemo zatim dodijeliti određene parametre kao što su spin i snaga interakcije. U modeliranju smo koristili programski jezik Julia, jer nam je pružao brojne mogućnosti za kontrolu pri izradi algoritma za simulacije, te brz i jednostavan grafički prikaz rezultata simulacija. Koristeći pravilo preferencijalnog spajanja, generiramo dvije mreže S i W koje u trenu t=0 imaju n_0 vrhova. Zatim smo svaki sljedeći trenutak dodavali jedan vrh koji smo spajali sa m_S postojećih vrhova u mreži S i sa $m_{W,S}$ postojećih vrhova u mreži W, gdje vjerojatnost spajanja ovisi o broju veza postojećih vrhova u mrežama S i W. Slično, koristeći preferencijalno spajanje, spajali smo novi vrh u mreži W sa m_W postojećih vrhova u mreži W i sa m_{SW} postojećih vrhova u mreži S. Generirane mreže sada možemo dalje koristiti u simulacijama interakcija spinova.

3 Teorijski model

Ovdje ćemo predstaviti model s dvije Barabási-Albert mreže koje se međusobno natječu. Mreže smo generirali pomoću pravila preferencijalnog spajanja, za vrijednosti $m_W = m_S = 3$ i $m_{S,W} = m_{W,S} = 2$. Kao u mnogim primjerima stvarnih mreža, može se dogoditi da vrh zataji, to jest izgubi vezu sa drugim vrhovima, a to može biti zbog unutarnjih razloga ili zbog toga što njegova funkcionalnost ovisi o njegovoj neposrednoj okolini. Stoga bilo koji vrh n_i u mreži S sa k_S susjednih vrhova u svojoj mreži i $k_{W,S}$ susjeda u mreži W, može zatajiti u bilo kojem trenutku, ili zbog unutarnjih razloga neovisnih o drugim vrhovima sa vjerojatnosti p_1 , ili zbog vanjskih utjecaja sa vjerojatnošću p_2 . Vrh n_i zataji sa vjerojatnosti p_2 kada ukupni udio aktivnih susjednih vrhova je manji od praga T koji je jednak za sve vrhove u svakoj mreži. Što je veća vrijednost praga T, to je mreža manje otporna. Pretpostavili smo da je jedna mreža otpornija od druge, tojest mreža S je otpornija od mreže W. To smo napravili tako da smo stavili različite pragove, T_S prag za jaku mrežu S i T_W prag za slabu mrežu W, tako da je $T_S < T_W$. Također uzimamo u obzira da vrh koji je zatajio unutarnjim procesom u mrežama S ili W se oporavi od zadnjeg zatajenja nakon perioda τ . Uzastopna zatajenja istog vrha produžuju efektivno vrijeme zatajenja i uvode heterogenost u raspodjelu perioda neaktivnosti. Ako je vrh predugo neaktivan, dopuštamo jačoj mreži S da ga preuzme. Na slici 2 se nalazi shematski prikaz ovog procesa.

Slika 2. Na slici su prikazani procesi preuzimanja u mrežama. a) Mreža S i mreža W imaju istu vjerojatnost p_1 za unutarnje zatajenje. Vrhovi koji su više vremena neaktivni slabije su obojani na slici (roza boja), dok su vrhovi jakih boja (tamnocrvena i tamnoplava) više vremena aktivni. b) Ako je vrh duže vrijeme neaktivan, onda će ga preuzeti jača mreža S

Na gore opisani način smo simulirali međusobne interakcije spinova. Svakoj mreži dodjeljujemo početno stanje spinova (+ ili -), a zatim promatramo koliki dio od ukupno vrhova je u akitvan (+). Raditi ćemo simulacije za različite vrijednosti vjerojatnosti unutarnjeg zatajenja p_1 , i vanjskog zatajenja p_2 . Simulacije za različite kombinacije p_1 i p_2 parametara prikazane su na slici 3. Radili smo simulaciju sa 5000 vrhova u svakoj mreži, a spinove smo stavili u stanje (+).

Slika 3. Broj vrhova u svakoj mreži je bio 5000, te smo imali različite vrijednosti pragova za jaku ("Mreža 2" ili "Network 2") i slabu ("Mreža 1" ili "Network 1") mrežu, $T_S = 0.3$ i $T_W = 0.7$. Lijevo je simulacija koje nam prikazuje dio aktivnih članova u svakoj mreži sa spinom u stanju (+) u ovisnosti u trenutku t. Desno vidimo usrednjeni broj aktivnih članova mreže u ovinsosti o parametru p_2 . Možemo primjetiti da slabija mreža ima manji broj aktivnih vrhova

4 Rezultati

Predstavljeni model smo iskoristili kako bi napravili fazni dijagram u ovisnosti o parametrima unutarnjeg i vanjskog zatajenja, p_1 i p_2 . Stavili smo 5000 vrhova u svakoj mreži te smo radili simulacije u slučaju spinova u stanju (-) i u stanju (+). Rezultate za određeni par p_1 i p_2 vrijednosti smo usrednjavali i također smo računali standardnu devijaciju rezultata. Broj aktivnih članova u faznom dijagramu ćemo izraziti preko skale boje u rasponu od 0 do 1.

Slika 4. Lijevo je fazni dijagram za slabu mrežu W, a desno je fazni dijagram za jaku mrežu S. Odnosi se na slučaj spinova (-). Primjećujemo kako je mreža S puno manje podložna promjenama, dok u slaboj mreži W primjećujemo više od dvije faze. Razliku možemo pripisati različitim vrijednostima praga.

Slika 5. Na lijevom grafu imamo srednju vrijednost zbroja faznih dijagrama mreže W i S za slučaj (-), a na desnom grafu je standardna devijacija za fazni dijagram. Možemo vidjeti kako cijeli sustav ima nekoliko faza, a slika standardne devijacije nam može pomoći kako bi razlučili njihove granice.

U slučaju kada su spinovi u (-) stanju, možemo primjetiti kako grafovi jako ovise o odabiru vrijednost praga T za pojedinu mrežu. Očekujemo slično predviđanje i u slučaju kada su spinovi u stanju (+).

Slika 6. Lijevo je fazni dijagram za slabu mrežu W, a desno je fazni dijagram za jaku mrežu S. Odnosi se na slučaj spinova (+).

Slika 7. Na lijevom grafu imamo srednju vrijednost zbroja faznih dijagrama mreže W i S za slučaj (+), a na desnom grafu je standardna devijacija za fazni dijagram. Ovdje možemo uočiti tri različite faze.

Jednom kada smo izračunali fazne dijagrame za slučaje (-) i (+) spinova, za konačno riješenje ćemo uzeti usrednjeni fazni dijagram za oba slučaja. On se nalazi na slici 8.

Slika 8. Na slici vidimo fazni dijagram koji je zbroj faznih dijagrama za slučaje (-) i (+), te također njegovu standardnu devijaciju.

Cilj nam je bio doći do saznanja o mogućnosti modeliranja različitih načina interakcije susjednih spinova, te kako se to odnosi na cijeli sustav u kojem se dipolni magnetski momenti nalaze.

5 Zaključak

U radu smo koristili relativno novu metodu u konstruiranju interakcija dipolnih magnetskih momenata. Prednost je to što stvarna struktura može biti dosta kompleksna, a mi smo je u stanju vrlo dobro opisati pomoću metode kompleksnih mreža. U radu smo dobili više faza, te mislimo da ovisno o odabiru parametara unutarnjeg zatajenja p_1 i vanjskog zatajenja p_2 , a isto tako i parametra praga T, smo u mogućnosti koristiti simulacije na realnim sustavima. U budućnosti se nadamo iskoristiti saznanja dobivena u ovome radu. Također bitno je istaknuti da smo u radu koristili relativno novi programski jezik Julia, koji nam je jako pomogao u kontroli podataka i izvedbi algoritma, te također u jednostavnom prikazu rezultata. Isto se nadamo da ćemo dobijene vještine koristiti u budućim profesionalnim zadacima i radovima.

Zahvala

Posebno se zahvaljujem mentoru izv. prof. dr. sc. Davoru Horvatiću na savjetima i pomoći u odabiru i izradi seminara.

6 Literatura

- B. Podobnik, D. Horvatic, T. Lipic, M. Perc, J. M. Buldu, H. E. Stanley (2015) The cost of attack in competing networks. J. R. Soc., Interface 12:20150770
- 2. Albert-László Barabási, Network Science http://barabasi.com/networksciencebook/
- 3. S. W. Son, H. Jeong, J. D. Noh (2006) Random field Ising model and community structure in complex networks, Eur. Phys. J. B 50, 431-437
- 4. R. Albert and A.L. Barabási (2002) Statistical mechanics of complex networks, Reviews of modern physics, vol. 74
- 5. Guido Caldarelli (2007) Scale-Free Networks, Complex webs in nature and technology, Oxford University Press, New York
- M. E. J. Newman (2003) The Structure and Function of Complex Networks, Siam Review, Vol. 45, No. 2, pp. 167–256