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The focus of this paper is to motivate and explain the duality between spectral triples and Rie-
mannian manifolds, state the spectral action formalism and present an application of said formalism
to modern particle physics models. The first portion of the paper focuses on motivating the idea of
noncommutative geometry in an understandable manner, through examples and applications that
appeared in physics in recent times. The second portion is focused on providing the mathemat-
ical background, which might be unfamiliar to a graduate physics student, while assuming some
knowledge of topology and differential geometry. We proceed by laying out the spectral triple for-
malism, which provides a language to speak of Riemannian manifolds using purely algebraic terms,
formulated as operators on a Hilbert space. Furthermore, a result by Connes is cited, which proves
the complete equivalence between Riemannian manifolds and the spectral triple (A,H,D. Next,
a principle for constructing physical actions from said spectral triples is outlined and finally, an
application of said principle is given on a particle physics model with curved background which
reproduces all of modern particle physics, as well as the gravitational action and the couplings be-
tween the two. Certain discrepancies between the obtained model and standard particle physics +
gravity models exist, which can be explained by imposing some physical constraints and through
the use of renormalization theory.

I. The Motivation and Applications for
Noncommutative Geometry in Physics

A. What is Noncommutative geometry?

In essence, the program of noncommutative geometry
is to impose a commutation relation of the form:

[xµ, xν ] = iθµν (1)

where θµν is an antisymmetric (2,0)-tensor, the modulus
of which determines the “scale of noncommutativity” and
xµ are the coordinate functions. As was the case in quan-
tum mechanics, it can be shown that this commutation
relation implies:

∆xµ∆xν ≥ 1

2
‖θµν‖ (2)

This implies that two position coordinates cannot be di-
agonalized simultaneously and therefore that they can-
not be measured at the same time. Volume is therefore
meaningless on scales smaller than ‖θµν‖2 and the idea
of describing space as a smooth manifold fails, needing
to be replaced by something new [1].

B. Quantum Physics and Quantum Field Theory

The disappearance of the coordinate space is in direct
analogy to the disappearance of phase space in quantum
mechanics upon imposing the canonical commutation re-
lations: [x, p] = i~.

One of the key problems in the early days of Quantum
Field Theory (the correct relativistic extension of quan-
tum mechanics) was to remove the divergencies plaguing
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many fundamental calculations. The historically (and
modernly) accepted solution to this problem is the renor-
malization group (RG) approach. It consists of placing
a UV cut-off, meaning the theory only considers energies
up to Λ and not any higher. This makes the many di-
vergent integrals finite and the theory well defined. Once
the whole thing works with the cut-off, the Λ is made to
go to infinity in some special way so that it retains the
regular behaviour of important physical quantities and
the theory functions without a cut-off all the way up to
infinite energy.

While the renormalization group is the historically ac-
cepted and predictively successful point of view when it
comes to calculations, there were other approaches at
the time that seem to be good candidates as well. One
such approach to solving this divergent integral problem
was to do QFT on a lattice, which yielded finite results
but broke Lorentz invariance - a fundamental principle
of physics. This led naturally to attempts to quantize
the spacetime itself, imposing a minimal length scale and
therefore a maximum momentum scale (that is to say en-
ergy scale [E ∼ p·c] for high-energy, nearly free particles),
naturally introducing a cut-off volume / energy scale be-
yond which the theory stops making sense - therefore
automatically dealing with the UV divergence problems
arising in QFT, all while preserving Lorentz invariance. If
the noncommutativity is ”small” in an appropriate sense
(simply put: that ‖θµν‖ in equation (1) is small compared
to length scales that we are concerned with) the theory
could reproduce all the results of the standard model at
the energies (∼ length scales) we make measurements at
today as the noncommutative behaviour would be “too
small” to see. Furthermore it should in principle give pre-
dictions for extremely high-energy behaviour where the
noncommutativity does comes into play but, as it turns
out, such high energy scales are well out of reach for any
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experiments to be done in the near (and far) future. The
problem with this approach is however that it mixes IR
and UV divergencies and creates problems of it’s own,
which haven’t generally been solved (except in certain
lower-dimensional models) [1],[2].

Modern theories of gravity tend to embraces the QFT
divergencies, interpreting the high-energy behaviour of
QFT as a failure of an incomplete theory that needs to
be replaced by an appropriate generalization, taking into
account gravitational effects. A simple line of reasoning
to this effect is given in the following section.

1. The Doplicher, Fredenhagen, Roberts argument

The argument [3-4] goes as follows: Imagine we’re inter-
ested in looking at some very small regions of spacetime.
To “look” at something we need to scatter particles of
it that are sensitive to the dimension of the object we’re
looking at. We therefore need the de Broglie wavelength
of the scattering particles to be smaller than or equal to
the dimension of the region of interest. It is then clear
that if we’re interested in a region of dimension L, we
have the condition on the de Broglie wavelength given
as:

λdB =
h

p
≤ L

Using the relativistic equation for a free particle:

E =
√
m2c4 + p2c2 ≈ pc

where ≈ holds when the energy is much larger than the
mass of the particle, an assumption that will be justified
very shortly. We therefore have the condition on the
energy of the particle:

E ≥ hc

L
Now we see that while the numerator is a fairly small
number in SI units, ∼ 200MeV fm, the energy condi-
tion can be made as large as need be, if we’re interested
in small enough regions of spacetime L. No problem in
sight yet, but now we employ a ubiquitous feature of any
theory of gravity - energy (density) bends spacetime and
when it surpasses a certain threshold, a black hole forms,
preventing any information from escaping. Combining
this with the energy condition from earlier, we arrive at
an impasse: as we make the dimension of spacetime we
want to investigate smaller, we require larger and larger
energies to be able to resolve it. On the other hand, as
we shoot higher and higher energy particles at our region
of interest, at some critical point, call it Lc, the energy
(density) of the probe becomes so high that it creates a
black hole and prevents any information about the region
of interest from reaching us.

Thus using no assumptions whatsoever and only a few
very elementary considerations from quantum mechan-
ics and general relativity, we’ve arrived at the following
conclusion: It is an intrinsic feature of our Universe that
there are length scales smaller than some Lc which re-

main inaccessible to any kind of probe and can therefore
be regarded to “not exist”.

There is a minimal physical length scale Lc of our
spacetime. Any region smaller than L4

c will remain inac-
cessible to any kind of experiment trying to observe what
happens inside of it.

This concept can be compactly expressed through
equation (1). Spacetime coordinates do not commute,
leading to an uncertainty relation which states that
measuring distance for scales smaller than some ‖θµν‖
(roughly speaking) doesn’t make much sense.

C. Non-Commutative Field Theory and the Star
Product

One way to introduce noncommutativity of coordi-
nates, or in a sense a “minimal length scale”, is through
the use of a special product between fields (in essence
between functions) appearing in the Lagrangian. This
kind of approach[1] consists of writing the Lagrangian
(for example for a φ4 Klein-Gordon theory) as:

L =
1

2
∂µφ ? ∂

µφ+
1

2
φ ? φ+

λ

4!
φ ? φ ? φ ? φ (3)

where the ? product between functions f and g is defined
as an associative, noncommutative operator of the form:

f ? g = fg +

∞∑
1

θnCn(f, g) (4)

The fg in this equation denotes the ordinary pointwise
product between functions, Cn is an order n (noncom-
mutative) differential operator and θ is the module of
the tensor from (1) - essentially determining the scale
of noncommutativity. Obviously, as “noncommutativity
goes to 0”, the theory reduces to the usual commutative
Lagrangian. These higher order differential terms add
additional structure to the theory (namely non-locality),
which can be controlled by varying the noncommutativity
parameter. Namely, if (θ → 0) this implies (f ? g = fg)),
or in words that the theory reduces to the usual commu-
tative product theory.

D. Effective models - Landau’s 2D model

A practical example of noncommuting coordinates, in
the form (1), appears when considering the 2-dimensional
Landau problem. The problem consists of a single free
particle of unit charge, constrained to move in a 2-
dimensional plane (x1, x2) with a constant magnetic field
B imposed in the direction perpendicular to the plane.
The Lagrangian of this theory is:

Lm =
m

2
~̇x2 − ~̇x · ~A(x) (5)

The canonical momentum comes out to be:

~π =
∂L
∂~̇x

= m~̇x− ~A(x) = ~p− ~A(x) (6)
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which gives the Hamiltonian:

H =
∂L
∂~̇x

~̇x− L =
1

2m
(~π + ~A)2 (7)

~A is given so as to reproduce the magnetic field B in the
z direction: Ai = −B2 εijx

j . Notice that A depends on
the position coordinates, and therefore doesn’t commute
with the position operator. This choice, along with the
canonical commutation relation [xi, πj ] = iδij , gives that
the canonical momenta πi = pi − Aj do not commute
with each other:

[πi, πj ] = [pi −Ai, pj −Aj ] (8)

= [pi,−
B

2
εjkx

k]− [−B
2
εikx

k, pj ] (9)

= −B
2
i(εij + εij) = −iBεij (10)

The momentum space is thus quantized into cells of vol-
ume B, as per the relation:

∆πi∆πj ≥ ‖B‖
Another interesting situation comes about if we now con-
sider the limit where the interaction part ẋi(−B2 εijx

j)

of (5) dominates over the kinetic part m
2 ẋ

2, we get the
condition: B >> m, which mathematically reduces to
m→ 0, or B →∞.

The canonical momentum is now:

πk =
∂L
∂ẋk

=
∂(−B2 ẋ

iεijx
j)

∂ẋk
= −B

2
εkjx

k ∼ xk (11)

The upshot is that if we now impose the canonical com-
mutation relation:

[xi, πj ] = [xi,−
B

2
εjkx

k] = −B
2
εjk[xi, xj ] = iδij

[xi, xj ] = −iεij 1

B
where we use: εijε

ij = ε01ε
01+ε10ε

10 = 2 up to an overall
sign due to convention. We’ve arrived at a noncommu-
tativity of position coordinates, simply from the limiting
behaviour of a model in standard quantum physics. From
this follows the uncertainty relation:

∆xi∆xj ≥
1

B
which effectively quantizes the volume of physical space
[1].

This is an example of a noncommutative theory ap-
pearing as a specific limit (effective theory) of a commu-
tative theory, a direct analogy to what happens in string
theory [1].

II. Mathematical Background

So far I’ve mentioned a very simple effective model
and overviewed some places where noncommutative ge-
ometry shows up in physics, without providing any real
mathematical detail. The purpose of the following sec-
tion will be to explain the contemporary (and somewhat
mathematical) approach to noncommutative geometry,

originally developed by Connes in the 1980s [5].

A. Introduction

The spacetime - a (pseudo) Riemannian manifold - is
the stage on which all of our experiments take place on,
mathematically represented as the pair: a smooth man-
ifold and a symmetric (0,2)-metric tensor: (M, g). It
turns out that we never actually directly measure the
manifold we live on or the metric tensor it is equipped
with. What we do measure are smooth functions on the
manifold and following this it seems to be assumed, with-
out further justification, that we can reconstruct infor-
mation about the underlying spacetime. If the functions
are really what’s key to the spacetime structure, then
the algebra of said functions must carry all the informa-
tion contained in the spacetime - i.e. the topological,
differential and geometrical structure of the Riemannian
manifold.

It turns out that there exists a correspondence between
the space of functions on a manifold M and some ab-
stract algebra A, which when equipped with some addi-
tional structure - the spectral triple (A,H,D) - can
carry the same information as the spacetime and all the
calculations can be done in an analogous way.

As the functions on manifolds are commutative, they
always correspond to commutative abstract algebras A
in the spectral triple; but surely A can in general be
noncommutative! Taking A to be noncommutative and
doing spectral triple calculations must, by following the
above logic in reverse, correspond to some manifold
(Mnonc, gnonc) on which the algebra of functions them-
selves is noncommutative - and thus on which coordinates
do not commute. It should be noted that this doesn’t ac-
tually give us a spacetime in the standard sense - it’s com-
pletely unclear what (Mnonc, gnonc) is from a differential
geometry standpoint, but it doesn’t really matter, since
what we do know is the spectral triple side of things, and
that’s enough to speak meaningfully about noncommu-
tative spaces and to perform calculations on them as we
wish.

The process of justifying these claims will roughly go
as follows:

• To start, we only concern ourselves with the al-
gebraic structure of functions on a manifold (a
topological space in fact) and state the Gelfand-
Naimark theorems, which show that this algebra
can be related to the representations of some ab-
stract algebra on a Hilbert space H. At this point,
we have the first two ingredients of the spectral
triple - the (A,H).

• The theorems only work for topological spaces and
we want them to work for full blown spacetimes, so
we’re pressed to introduce differential structure on
the topological space and try to extend it somehow
to the algebraic side of things in the ”correct” way
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so the correspondence survives. Doing so, we in-
troduce the differential calculi and space of deriva-
tions of an abstract algebra and relate it to the
Dirac operator D. At this point, we have the en-
tire (A,H,D).

• The spectrum of D can be used to reconstruct
the manifold structure it corresponds to (roughly
speaking, up to some technical equivalence)

• It can be shown that D - the Dirac operator - is
capable of reproducing the notion of ”distance” be-
tween two ”points” and thus is equivalent also to
the metric on a Riemannian manifold

To be able to talk about these things we need to intro-
duce the obligatory terminology and a few basic results.
I will spend a little more time on abstract algebra and a
little bit less on differential geometry since the latter is
usually more familiar to physicists.

B. Mathematical Preliminaries:
Topology, Geometry & Abstract Algebra

I’ll skip the long and arduous construction of Rieman-
nian manifolds, the details of which can be found in most
of the introductory mathematical literature on the sub-
ject [7]. The important bits of information are the follow-
ing: a manifold is a locally Euclidean topological space,
which when equipped with a positive definite metric g
(among other things) becomes a Riemannian manifold.
A result then follows, which will become important much
later:

Definition 1. We say two Riemannian manifolds (M, g)
and (N,h) are isometric if there exists a map f (isom-
etry) between these manifolds f : (M, g) → (N,h) such
that the pullback f∗h = g holds. This comes down to the
condition that said map preserves distance between the
manifolds.

Now I shall move on to the algebraic definitions un-
derlying the theory. While I obviously can’t overview
every piece of algebraic technology necessary to under-
stand the article, I will try to provide at least the details
unfamiliar to most readers with a physics background.

Definition 2. A Ring (R,+, ·) is a set equipped with
two operations, which satisfy the following conditions:

+ : R ·R→ R

Commutativity:

∀x, y ∈ R
x+ y = y + x

Associativity:

∀x, y, z ∈ R
x+ (y + z) = (x+ y) + z

Neutral element:

∃0 ∈ R : ∀x ∈ R
x+ 0 = x

Inverse element:

∀x ∈ R , ∃(−x) ∈ R
x+ (−x) = 0

· : R×R→ R

*Commutativity:

∀x, y ∈ R
x · y = y · x

Associativity:

∀x, y, z ∈ R
x · (y · z) = (x · y) · z

*Neutral element:

∃1 ∈ R : ∀x ∈ R
x · 1 = x

*Inverse element:

∀x ∈ R\{0},∃(1/x) ∈ R
x · (1/x) = 1

*Ring multiplication need not generally satisfy the
starred conditions. If it does, we call the ring a com-
mutative (commutativity), unital (neutral element) and
division ring (inverse element). A field is a special case
of a ring, all three at once: a commutative, unital, divi-
sion ring.

Definition 3. A module (V,⊕,�) over a ring (R,+, ·
is a set equipped with two operations, which satisfy the
following conditions:

⊕ : V ×V→ V

Commutativity:

∀x, y ∈ R
x⊕ y = y ⊕ x
Associativity:

∀x, y, z ∈ R
x⊕ (y ⊕ z) = (x⊕ y)⊕ z

Neutral element:

∃0 ∈ R : ∀x ∈ R
x⊕ 0 = x

Inverse element:

∀x ∈ R , ∃(−x) ∈ R
x⊕ (−x) = 0

� : R×V→ V

Associativity:

∀r, s ∈ R,∀v ∈ V
(r · s)� v = r � (s� v)

Distributivity of vectors:

∀r ∈ R,∀v, w ∈ V
r � (v ⊕ w) = r � v + r � w

Distributivity of scalars:

∀r, s ∈ R,∀v ∈ V
(r + s)� v = r � v ⊕ s� v

Scalar identity:

∃1 ∈ R,∀v ∈ V
1� v = v

If the ring is in fact a field - that is a commutative,
unital, division ring - then this is a definition of a vector
space over the field R.

Note: usually ⊕ and � are written as +, · and it is to
be understood from context whether they are the ring or
the module operations.

Following are some important properties of modules.

Definition 4. A generating system S of a D-module V
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is a subset S ⊂ V such that:

(∀v ∈ V ) (∃{v1, ...vn} ∈ D) (∃{e1, ..., en} ⊂ S) : (v = viei)

The cardinality of S need not be finite, but every v can be
written as a finite linear combination of elements from S.
A basis is a generating system that is additionally linearly
independent:

(∀s ∈ S)(s /∈ span(S\{s})
If a generating system is called finite if it is of finite car-
dinality.

Thus - modules are different from vector spaces only
in terms of the difference in the ring vs field structure.
The key difference comes from the possibility that the
elements of the ring don’t have a multiplicative inverse,
i.e. it not being a division ring.

Theorem 1. Let D be a division ring. Then a D-module
V has a basis.

Corollary 1.1. Every vector space has a basis, since any
field is a division ring.

The corollary is obvious since every field is necessarily
a division ring (and also a commutative and unital ring).
Note that a module over a non-division ring might still
have a basis, but it isn’t guaranteed as in the case of a
division ring.

To see that this is nothing all that abstract, consider
the familiar notion of smooth functions C∞(M); well be-
haved in most ways with respect to addition and multi-
plication, but alas there is a problem - a generic function
doesn’t have a multiplicative inverse.

Example 1. LetM be a smooth differentiable manifold,
C∞(M) be the space of smooth functions.

Take for example the smooth function f ∈ C∞(M) and
say it vanishes at a point p ∈M:

f(p) = 0

(a completely valid property of a smooth function).
A multiplicative inverse f−1 is by definition:

∀x ∈M : f(x) · f−1(x) = 1

Evaluating this at point p, we conclude that f−1(p) needs
to be divergent, or in other words not a smooth function.

We see that smooth functions C∞(M) do not form a
division ring and thus, referring to the earlier theorem,
any C∞-module is not guaranteed to have a basis.

Example 2. Let M be a smooth manifold, C∞(M) be
the smooth functions. The vector fields overM, Γ(TM),
do not constitute a vector space, but are rather a C∞-
module.

An example of such a C∞-module not having a basis is
the “You can’t comb a sphere” theorem [6], which states
that it is impossible to construct a nowhere vanishing vec-
tor field on a sphere; much less two nowhere vanishing
vector fields that are linearly independent, which would
thus form a basis.

Definition 5. A module over a ring is called free if it
has a basis.

This doesn’t necessarily mean that the ring has to be
a division ring. There exist non-division ring modules
which do have a basis (e.g. the vector fields on R2 do
have a basis over the ring C∞(R2); constant fields x̂ and
ŷ form such a basis).

Remark 1. If a finitely generated D-module F is free,
then it is isomorphic to the direct sum of N copies of the
ring D:

F ∼=
N times︷ ︸︸ ︷

D ⊕ ...⊕D
where N is the cardinality of the generating system.

This is in direct analogy with any finite-dimensional
vector spaces being isomorphic to Rn.

Definition 6. An R-module P is called projective if:

(∃R-module Q), (∃ free R-module F ) : P ⊕Q = F

holds.

Remark 2. A module being free implies it is projective,
as Q from the definition can be picked to be the empty
module {∅}.

Theorem 2. (Serre, Swan, and others) The set of all

smooth sections of a vector fibre bundle (E
π−→ M) on

a smooth manifold M is a finitely generated projective
C∞(M)-module P (E).

The slew of definitions continues:

Definition 7. An associative R-algebra A over a ring
R is an R-module (A,+, ·) with an additional multiplica-
tion operation: × : A × A → A such that (A,+,×) also
satisfies the (unital) ring axioms.

From this we see that an associative algebra is also a
ring, giving meaning to a module structure over an “as-
sociative algebra” ring (plus some additional structure).

Definition 8. A normed ring R is a ring with map |.| :
R→ R such that: (∀r, w ∈ R) : |rs| ≤ |r||s| and |1| = 1

Definition 9. A Banach algebra B is an associative R-
algebra (B,+, ·,×) over a normed ring, equipped with a
norm ‖.‖ : B → R that satisfies the properties:

• (∀x ∈ B\{0}) : ‖x‖ > 0 (‖x‖ = 0) ⇐⇒ (x = 0)

• (∀x ∈ B), (∀r ∈ R) : ‖rx‖ = ‖r‖‖x‖
• (∀x, y ∈ B) : ‖x+ y‖ ≤ ‖x‖+ ‖y‖

thus (B,+, ·) a normed vector space; and additionally:

• (∀x, y ∈ B) : ‖xy‖ ≤ ‖x‖‖y‖

completing the Banach algebra structure. It is also re-
quired that B be complete in the norm, meaning that ev-
ery Cauchy sequence has a limit in B.
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Remark 3. A vector space with norm and completeness
in said norm is what is usually referred to as a “Banach
space”. A Banach algebra is then the extension of this
requirement that said vector space also behave like a ring
when equipped with a vector multiplication operation.

Definition 10. A Hilbert space is a vector space (H,+, ·)
over a field F, equipped with an inner product map: 〈., .〉 :
H ×H → R which satisfies:

• (∀x, y ∈ H) :

〈y, x〉 = 〈x, y〉
• (∀x, y, z ∈ H)(∀a, b ∈ F ) :
〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉
• (∀x ∈ H) :
〈x, x〉 ≥ 0

The Hilbert space inner product automatically induces a
norm on H, making it also a Banach space.

A ring can be equipped with further structure that we
will need. The definition follows:

Definition 11. A *-ring R is a ring with a map

(∗: R×R→ R)

that is involutive (it’s own inverse) and an antiisomor-
phism.
Equivalently, the conditions on ∗ are as follows:
(∀x, y ∈ R) :

• (x+ y)∗ = x∗ + y∗

• (xy)∗ = y∗x∗ (antiisomorphism)

• 1∗ = 1

• (x∗)∗ = x (involutivity)

Definition 12. A *-algebra A is a *-ring with invluo-
tion ∗ that is an associative algebra over a *-ring R with
involution ‘, such that:
(∀r ∈ R)(∀x ∈ A) : (rx)∗ = r′x∗

A familiar example of a *-algebra structure is for ex-
ample the algebra of complex functions over a complex
*-field, with complex conjugation as both of the involu-
tions.

Definition 13. A C*-algebra is a *-algebra that is also
a Banach algebra; i.e. has a norm and is complete.

Remark 4. A norm of a linear operator on a Hilbert
space H is given by:

‖T‖ = sup
v∈H,‖v‖=1

‖Tv‖

i.e. by it’s “largest action on a unit vector in H”.
It then turns out that the algebra of all bounded operators
on H, call it B(H), is a C∗-algebra and so is any of
it’s norm closed subalgebras (that is: restrictions of the
algebra to norm ≤ some number).

A Hilbert space is chosen to provide the space with an
appropriate norm.

Definition 14. A bounded linear map π : A → B, be-
tween C∗-algebras A and B is called a *-homomorphism
if:

• (∀x, y ∈ A) : π(xy) = π(x)π(y)

• (∀x ∈ A) : π(x∗) = π(x)∗

Note: A bijective *-homomorphism is called a *-
isomorphism.

Remark 5. If X is a (locally) compact Hausdorff space
and C(X) is the algebra of continuous complex functions
on X, then C(X) is a commutative (non) unital C∗-
algebra over the field of complex numbers.

Definition 15. A representation of a finite-dimensional
*-algebra A is the pair (H,π), where H is (finite-
dimensional, complex) inner product space and π is a
*-algebra map:

π : A→ L(H)

where L(H) is the space of linear (finite-dimensional,
complex) operators acting on H: L : H → H such that
they preserve the vector space structure.

Remark 6. A representation (H,π) is called irreducible
if there is no subspace W ∈ H, other than ∅ and H, such
that it is invariant under the action of the entire image
of L(H).

(@W ∈ H)(∀a ∈ A) : π(a)W ∈W
as then the choice (W,π|W ) would equally validly repre-
sent the algebra.

Definition 16. Two representations (H1, π1) and
(H2, π2) of an algebra A are said to be unitarily equiv-
alent if:

(∃U : H1 → H2)(∀a ∈ A) : π1(a) = U∗π2(a)U

Definition 17. A structure space Â of the C∗-algebra
A is the set of all unitary equivalence classes of irre-
ducible representations of A.

C. Algebrizing the Geometry

The goal is now to build up the different levels of man-
ifold structure:

• The topological - points, open sets, etc.

• The differential - vector fields and differential forms

• And finally the geometrical - the notion of distance
on a manifold given by the metric

in algebraic terms.



7

1. The Gelfand-Naimark theorems

Having introduced a plethora of definitions, we’re now
terminologically equipped to talk about the first few
results; namely the Gelfand-Naimark theorems, which
work towards the first level - the topological, giving the
prototype of a connection between points on a manifold
and states on an abstract algebra.

Remark 7. For a topological, (locally) compact, Haus-
dorff space X; the continuous complex-valued functions
C(X) form a commutative (non) unital C∗-algebra.

This is the natural C∗-algebra on the manifold that
we’re hoping we can relate to an abstract algebra, as is
done by the following two theorems [8][9].:

Theorem 3. (Gelfand-Naimark-Segal; The
Gelfand duality) Every abstract C∗-algebra A is
isometrically *-isomorphic to a concrete C∗-algebra of
operators on a Hilbert space H. If the algebra A is
separable then we can take H to be separable.

Given an abstract algebra A, the theorem guarantees
that we can find a Hilbert space H on which there exists
a ∗−structure preserving representation of A.

Theorem 4. (Gelfand-Naimark) If a C∗-algebra is
commutative then it is an algebra of continuous functions
on some (locally compact, Hausdorff) topological space.

An alternative reading of the second theorem is: given
a commutative algebra A, represented on a specific
Hilbert space H, by means of the first theorem, we are
guaranteed that this exactly corresponds to the algebra
of functions on some topological space, thus providing
an equivalence between the pair (A,H) and a topologi-
cal space M . If, however, the algebra is noncommutative
(and those certainly exist), then it seems unclear what
this corresponds to, but the appeal of the formalism that
is to follow (namely the spectral triple and spectral action
principle) is that it works equally well and can be used to
represent the ‘algebraic side’ of a noncommutative space
without having to develop any of the technology of dif-
ferential geometry on geometric noncommutative spaces.

2. Points vs Algebras

The theorems (3) and (4) seem to relate topological
spaces and algebras. This begs the question - what does
the most basic building block of topological spaces, the
point correspond to on the algebra side of things? While
the formal mathematical construction is known [13], it
would turn out to be too big of a digression to be worth
introducing. Instead, I’ll just cite the result:

Remark 8. Let A be a commutative C∗-algebra, which
by (3) and (4) corresponds to C(X) for some topological
space X. Then the following are equivalent:

• x ∈ X is a point.

• χx : A → C, χx(f) = f(x) is a character of the
algebra A.

• χx : A→ C, χx(f) = f(x) is a pure state on A.

• χx : A → C, χx(f) = f(x) is an irreducible repre-
sentation of A.

• Ix ⊂ A, Ix = {f ∈ A : f(x) = 0} is a maximal
ideal.

Additionally we need the informally stated theorem:

Theorem 5. Every irreducible representation of a C∗-
algebra is unitarily equivalent to the point-evaluated rep-
resentation: χx(f) = f(x).

The important point here is that given an algebra A
and classifying, for example, all the irreducible represen-
tations (up to unitary equivalence), i.e. the structure
space of A, directly corresponds to talking about the
points on the manifold X.

This can be expanded on further, providing the alge-
braic equivalents of all the different things one can define
on a topological space; for example: homeomorphisms ∼=
automorphisms, open subsets ∼= ideals of A, Cartesian
products ∼= tensor products, etc., but none of this detail
will be relevant for further developments so I won’t spend
much time on it.

This entire thing relies on the algebra being commuta-
tive. If A is noncommutative the equivalences from the
remark above don’t hold and while we can indeed still
find characters, pure states and irreducible representa-
tions of noncommutative algebras, they won’t correspond
to a notion of a point on some ”noncommutative topo-
logical space”.

A result of this topological equivalence of algebra rep-
resentations and topological manifolds, which will come
up later follows:

Remark 9. A homeomorphism (and this extends well
to diffeomorphism once we introduce differentiable struc-
ture) of a topological manifold corresponds to an auto-
morphism of the corresponding algebra A.

Again, none of these results follow from the text up
until here, but the point is that all of this exists - it is
formally true that all the information in a topological
space is somehow encoded in the algebraic structure, as
provided by (3) and (4), etc..

3. Differential Calculus

Having A,H, we’ve dealt with the topological equiv-
alence. Now we want to extend this further to a differ-
entiable and ultimately geometric equivalence between
manifolds and abstract algebras. For this we have to
acquire a notion of differential calculus and ultimately
“distance”, or in other words, to promote the “locally
compact Hausdorff topological space” in the above theo-
rems to a full-fledged differentiable manifold with metric.
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The idea ([8] [10] [11]) is to formulate the definitions
of vector fields and forms from differential geometry in
algebraic terms. This should then allow us to construct
analogous definitions for the abstract algebraic sector.

Starting from the idea of vector fields on manifolds:

Definition 18. A vector field is a left C∞-module and a
derivation d : C∞ → C∞ on the associative algebra (over
R of C∞ functions.

Using the already established analogy: C∞ function
algebra ∼ A (in fact the representation of A on H, but
whatever) we have the following definition:

Definition 19. The vector space of derivations of A is
defined by the set of K-linear maps:

DerA =
{
ξ : A

∼−→ ε | ξ(a · b) = ξ(a) · b+ a · ξ(b)
}

(a, b ∈ A)

where
∼−→ denotes K-linearity in the underlying field and

ε is an A-bimodule.

The space of derivations is also a Lie algebra with com-
mutator defined by composition of K-linear maps, which
will be relevant for the definition of the graded differen-
tial algebra, later.

The dual construction then proceeds exactly as in dif-
ferential geometry:

Definition 20. The R-vector space of 1-forms on the
algebra are then defined as the space of A-linear maps
LinA(DerA,A) over.

The graded algebra of forms is then constructed by:

Λ(DerA,A) := ⊕pΛp(DerA,A)

where Λp denotes p copies of LinA(DerA,A) Cartesian
producted together, and multilinear and skew-symmetric
in A.

Definition 21. The exterior derivative d defined by:

d : Λp(DerA,A)→ Λp+1(DerA,A)

dω(X1, ..., Xn) =∑
k

(−)k+1Xkω(X1, ..., /Xk, ..., Xp+1)

+
∑
k<l

(−)k+lω([Xk, Xl], X1, ... /Xk, ... /Xl, ...Xp)

for X ∈ DerA. The exterior derivative is a graded deriva-
tion of degree +1 if we make the identification

Let’s start of with a remark on modules:

Remark 10. A left A-module L of an associative alge-
bra A, whose operations (A,+,×) satisfy the ring axioms,
is defined the same as for a ring, but with ring multipli-
cation only defined when acting from the left.

(∀a, b ∈ A)(∀l ∈ L) : a · (b · l) = (a · b) · l
A right A-module is defined analogously as:

(∀a, b ∈ A)(∀r ∈ R) : (r · a) · b = r · (a · b)

A bimodule over two algebras A, B - call it K - is then
defined as having multiplication from both sides by the
algebra and the algebra being associative:

(∀a ∈ A)(∀b ∈ B)(∀k ∈ K) : (a · k) · b = a · (k · b)

This technology was introduced so we could talk, alge-
braically about forms on a manifold:

Remark 11. Differential one-forms Ω1(M) over a man-
ifold M are a bimodule over the associative algebra of
smooth functions C∞(M). The external derivative d:
C∞(M) → Ω1(M) is a bimodule-valued derivation on
the algebra C∞(M):

d(fg) = (df) · g + f · (dg),∀f, g ∈ C∞(M)

Having stated what forms on a manifold are in alge-
braic language, we can define an analogue on an abstract
algebra:

Definition 22. Let A be an algebra. The first-order
differential calculus over A is the pair (Ω1(A), d) where
Ω1(A) is a bimodule over A and d is an Ω1(A)-valued
derivation of A:

d(ab) = (da) · b+ a · (db),∀a, b ∈ A

While this seems like a valid definition, the space of
first-order differential calculi over A is hardly unique,
while the one-forms are uniquely determined on mani-
folds as the duals of vectors. Due to this, we might ask
what happens to vector fields - that is to objects acting
as derivations on the continuous functions on a manifold.
We proceed through thus developed analogy:

Example 3. The continuous functions correspond to el-
ements of the algebra, which can be represented on a
Hilbert space H by the map π.

We choose as the algebra A the full graded differential
algebra over C∞(M) and as the Hilbert space H the (left
C∞-)module of one-forms. Taking f ∈ Ω0, i.e. a C∞

function and ψ ∈ Ω1, i.e. a one-form, we have by virtue
of d satisfying the Leibniz rule:

(df)ψ = d(f · ψ)− f · (dψ) = [d, f ]ψ

Thus constructed, [d, f ] is an operator on the space of
one-forms ψ which satisfies the Leibniz rule and is linear

Generalizing this, we have to figure out what to re-
place the operator d with when considering general non-
commutative algebras and thus noncommutative spaces.
This will in fact appear later in the form of the Dirac
operator.

4. Spin Manifolds

When talking about a Riemannian manifold with met-
ric (M, g), it can be useful to lift the structure to a
spin manifold and work with that instead. This is in a
way analogous to the interplay between the Klein-Gordon
equation and the Dirac equation; where KG appears as
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the “square” of the Dirac, but Dirac has additional struc-
ture - the spin structure.

Having motivated spin-structures, let’s get to the def-
initions and results, following the developments of [12]:

Definition 23. Let V be a vector space over a field F,
equipped with a quadratic form Q : V → F, such that:

Q(λv) = λ2Q(v); (λ ∈ F, v ∈ V )

Q(v + w) +Q(v − w) = Q(v) +Q(w); (v, w ∈ V )

Such a Q on V gives rise to a Clifford (associative, unital)
algebra Cl(V,Q) subject to the relation

v2 = Q(v)1

where 1 is the multiplicative identity of the algebra.

The Clifford algebra structure is in essence the promo-
tion of a vector space to an associative algebra structure,
but with the additional condition that the ”squares” of
the vectors are ”normalized” in accordance with some
quadratic map Q.

Remark 12. As the form defining the Clifford algebra
is quadratic, it doesn’t distinguish between v ∈ V and
−v ∈ V . This implies there exists an algebra automor-
phism (isomorphism onto itself) and therefore a grading
(decomposition given by the automorphism):

α : Cl(V,Q)→ Cl(V,Q)

=⇒ Cl(V,Q) = Cl[0](V,Q)⊗ Cl[1](V,Q)

where

Cl[l](V,Q) = {x ∈ Cl(V,Q)|α(x) = (−1)lx}
Note: It then follows that any product of k vectors (of
negative parity, as all true vectors are of negative parity)
in the algebra is even if k is even and conversely is odd
if k is odd.

α(x1 · · · xk) = (−1)kx1 · · · xk

Remark 13. It is easily seen that:

vw + wv = 2gQ(v, w)

provided we define

gQ(v, w) :=
1

2
(Q(v + w)−Q(v)−Q(w))

=
1

2
((v + w)2 + v2 + w2)

=
1

2
(vw + wv)

(12)

which is the familiar notion of a Clifford algebra, as
usually seen in particle physics with γ-matrices. One
should note that a Clifford algebra may well be defined
over a vector space with complex coefficients; then
denoted: Cln.

The notation for the standard (”Euclidean”) Clif-
ford algebras with a particularly simple quadratic map

Qn(x1, ..., xn) = x21 + ...+ x2n are the following:

Cl+n := Cl(Rn, Qn)

Cl−n := Cl(Rn,−Qn)

Cln := Cl(Cn, Qn)

where we should note that on C-vector spaces, an overall
sign in the definition of the Clifford mapQ doesn’t matter
since vector components can have complex coefficients
and thus can change the signature of Q. Thus every
signature on a complex vector space is equivalent to the
all-pluses signature.

A complexificaton of a Clifford algebra Cl(V,Q) is de-
fined as:

Cl(V,Q) = Cl(V,Q)⊗ C

Definition 24. The chirality operator γn+1 on Cln,
equipped with a vector space basis {e1, ..., en}, is defined
as:

γn+1 = (−i)me1 · · · en
where n = 2m if n is even and n = 2m+1 if n is odd.

As we know, a manifold has a vector space - the tanget
space - at each point, and we will want to define a Clifford
algebra at each point in the manifold, take a disjoint
union and thus get what is called a Clifford bundle! As
Riemannian manifolds (M, g) come equipped with the
familiar bilinear form g, the metric, we will be using it
to define the required quadratic Clifford map from (12).

Definition 25. A Riemannian metric on a manifold M
is a symmetric bilinear form on vector fields Γ(TM)

g : Γ(TM)× Γ(TM)→ C(M)

such that

• g(X,Y) is a real function if X and Y are real vector
fields;
• g is C(M)-bilinear:

g(fX, Y ) = g(X, fY ) = fg(X,Y ); (f ∈ C(M))

• g(X,X) ≥ 0 for all real vector fields X and
g(X,X) = 0 ⇐⇒ X = 0.

C(M) is the set of continuous functions on the manifold
M .

Intuitively, we can now construct what is called a ”Clif-
ford algebra bundle”.

Definition 26. The idea with bundles is as usual to con-
struct a Clifford algebra at every point and then take the
union.

A metric g on M is usually represented as a (0,2)-
form dependant on some local coordinates (chart) - g(x).
Given this, we can take the evaluation of the metric at
a point p - g(p) - as the symmetric bilinear form on the
vector space at that point - TpM .

We now have all the ingredients to define the Clifford
algebra at p:

Cl(TpM,Qp)
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as according to equation (12) we can reconstruct the nec-
essary quadratic form map Qp from having g(p).

The disjoint union of all such Clifford algebras with
transition maps inherited from TM is the definition of a
Clifford bundle Cl(TM).

Remark 14. As the tangent space over a real Rieman-
nian manifold is a real vector space isomorphic to Rn,
the Clifford algebras at a point look like Cl+(Rn, Q) and
thus the whole bundle deserved the name Cl+(TM).

Note: The sections of a Clifford algebra bundle are
usually denoted Cliff(M)+ = Γ(Cl+(TM)) and the com-
plexified version as

Cliff(M) := Cliff+(M)⊗R C
We are now ready to define what is meant by a spin

manifold.

Definition 27. A Riemannian manifold is called spinc

if there exists a vector bundle S → M such that there
is an algebra bundle isomorphism (meaning it preserves
both the bundle and the algebra structure):

Cl(TM) ∼= End(S) (M even-dimensional)

Cl(TM)0 ∼= End(S) (M odd-dimensional)

If such a pair (M,S) exists, we call S the spinor bundle,
and the sections Γ(S) spinors.

This definition comes down to providing a representa-
tion of the Clifford algebra Cl(TM) on S and S → M
being a vector bundle.
As this is an algebra morphism, a multiplication map
on the vector fields needs to be established; of the form
Γ(S)× Γ(S)→ Γ(S).

Definition 28. Let (M,S) be a spinc structure on M .
Clifford multiplication is defined by the linear map:

c : Ω1 × Γ(S)→ Γ(S)

(ω,X) 7→ ω#X
(13)

where ω# is the vector field corresponding to the form ω
as that vector field whose dual is induced by the metric:
ω = g(ω#, .).

Note that the vector field is defined through ω which
takes a vector field and gives a real number, to be under-
stood as a 1-form.

Definition 29. A Riemannian spinc manifold is called
spin if there exists an antiunitary operator JM : Γ(S)→
Γ(S) such that:

• JM commutes with the action of real-valued func-
tions on Γ(S)

• JM commutes with Cliff−

We call the pair (S, JM ) a spin structure on M and refer
to the operator JM as the charge conjugation.

Remark 15. The representation theory of Clifford alge-
bras and spinor bundles gives us the following results:

• If the manifold M is even dimensional, we can de-
fine the grading on the sections of the vector bundle:

(γMψ)(x) = γn+1(ψ(x)); (ψ = Γ(S)).

where γn+1 is defined above.

• The dimension (modulo 8) of the manifold M de-
termines the behaviour of JM ; specifically

J2
M = ε, JMx = ε′xJM ;

JMγM = ε′′γMJM

such that (x ∈ (Cliff−(M))) and (ε, ε′ and ε′)′ =
{−1,+1} depend on dimension. [12]

5. The Spin Connection and Dirac Operator

Having a spin structure on the manifold now allows us
to construct an operator which, when squared, gives the
usual Laplace operator - in differential geometry terms
equivalent to the metric g.

Intuitively, we’re looking for the square root of the
usual Laplace, or in other words some operator D which
squares to give the Laplace:

D2 ∼ gµν∂µ∂ν

once again, similarly to how Dirac “guessed” the general-
ization of the Klein-Gordon equation, but now in a more
general setting [5] [12].

Definition 30. A connection on a vector bundle E →
M is given by a C-linear map on the space of smooth
sections:

∇ : Γ∞(E)→ Ω1
dR(M)⊗C∞(M) Γ∞(E)

satisfying the Leibniz rule:

∇(fX) = f∇(X) + df ⊗X; (f ∈ C∞(M), X ∈ Γ∞(E))

Definition 31. A connection is considered compatible
with the metric if it holds that for a given inner product
< ., . >: Γ∞(E)× Γ∞(E)→ C∞ it holds:

< ∇ρ, φ > + < ρ,∇φ >= d < ρ, φ >

for smooth sections ρ, φ ∈ Γ∞(E).

This is often written in more familiar form, where the
inner product is given by the metric, as:

∇(gµνV
µV ν) = gµν∇(V µ)V ν + gµνV

µ∇(V ν)

usually read as: ”the covariant derivative doesn’t see / is
compatible with the metric”.

Remark 16. It can be shown that there exists a unique
connection on a Riemannian manifold (M, g) that is com-
patible with the metric g.

Definition 32. A spin connection ∇S is defined on a
spinor bundle (S → M) as the lift of the Levi-Civita
connection.
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6. The Distance on Abstract Algebras and the Dirac
Operator

At this point we’d like to give a notion of distance
that works on algebraic structures and reproduces the
manifold distance function between points.

Remark 17. The distance function on M as induced by
the metric g, is given by the infimum:

dg(xi, xf ) = inf
γ

{∫ 1

0

g(γ̇(t), γ̇(t))dt : γ(0) = xi, γ(1) = xf

}
(14)

Intuitively - ”the shortest path on M , that connects the
points xi and xf”.

Now we get to defining a distance function on the al-
gebra ; but for this we need some additional technology;
the Dirac operator [12]:

Definition 33. Let M be a spin manifold (M,S, JM ).
The Dirac operator DM is the composition of the spin
connection on S with Clifford multiplication (13):

DM : Γ∞(S)
∇S

−−→ Ω1(M)⊗C∞ Γ∞(S)→ Γ∞(S)

Theorem 6 (17). The Dirac operator DM is self-adjoint
on L2(S) with compact resolvent (i+D)−1, and a relation
holds for the commutators with elements in C∞(M):

[DM , f ] = −ic(df)

so that ‖[DM , f ]‖ = ‖f‖Lip is the Lipschitz (semi)-norm
of f:

‖f‖Lip = sup
x6=y

{f(x)− f(y)

dg(x, y)

}
Here we see the remnants of the old relation [d, f ]ψ func-
tioning as a vector field, but this time with a self adjoint
operator DM .

In operator theory [14], a compact resolvent implies
that the operator DM has a discrete set of eigenvalues,
subset of C, while the fact that DM is self-adjoint gives us
an orthonormal basis {v1, ...} with eigenvalues {λ1, ...}.

Theorem 7. Given a C∞ algebra (as taken from a Clif-
ford bundle S → M) and a Dirac operator DM , we can
take as the notion of a distance between two characters
(i.e. points on a manifold) of said algebra the formula:

d(x, y) = sup
f∈C∞(M)

{|f(x)− f(y)| : ‖[DM , f‖ ≤ 1}

where this notion turns out to be the same as the distance
between the points x and y on the manifold, as given by
(14).

This can be formally proven / derived in the theory of
Kantorovich optimal transport [15][16].
To see that this indeed does work, consider the example
[12]:

Example 4. Take as the manifold M = R with the al-
gebra of all functions C∞ : R → R. The Dirac opera-
tor is simply the derivative operator ∂x (up to a complex

factor, usually -i to make it self-adjoint). Now imagine
we’re looking for the distance between two points x and y
on the real line.

Taken as a manifold, there isn’t much thinking; the
obvious shortest path connecting x and y is the only path
connecting x and y, the straight line between them, and
the integral from (14) obviously gives dg(x, y) = |x− y|.

The algebraic approach is a little less straight forward
(pun not intended) but is still fairly simple to see if we
translate it into standard-analysis terms. We consider
all elements of the algebra (functions); specifically the
difference of their characters f(x) and f(y) (i.e. we look
at the difference in value of said algebra elements), such
that their commutator

[DM , f ] = ∂x(f(x)) + f(x)∂x − f(x)∂x = ∂x(f(x))

be less than or equal to 1 (i.e. functions whose slope
never becomes greater than 1). So, analytically speaking,
we’re looking for the function whose slope is always less
than or equal to 1, which maximizes it’s growth between
x and y. After a little thinking (or drawing) it becomes
pretty quickly apparent that the function maximizing it’s
growth is in fact the linear function f(x) = x; in which
case the distance becomes

d(x, y) = |f(x)− f(y)| = |x− y|
which exactly reproduces the manifold distance.

Having seen how to effectively reproduce the metric,
first by defining a Dirac operator DM and then by for-
mulating the distance function using said operator, we’re
effectively done. We know how to reproduce the man-
ifold and all of it’s differentiable structure and we ad-
ditionally know even how to reproduce the Riemannian
metric. Along the way we had a lot of things and it’s now
convenient to package all of this into one big structure -
the Spectral Triple.

Definition 34. A spectral triple (A,H,D) is given by
a unital ∗-algebra A represented as bounded operators on
a Hilbert space H and self-adjoint operator D in H such
that the resolvent (i + D)−1 is a compact operator and
[D, a] is bounded for each a ∈ A.

• A spectral triple is even if the Hilbert space H is
endowed with a Z2 grading γ such that γa = aγ
and γD = −Dγ.

• A real spectral triple (or a spectral triple with real
structure) is a spectral triple equipped with the
isometry J : H → H such that:

J2 = ε, JD = ε′DJ, Jγ = ε′′γJ

where ε, ε′, ε′′ ∈ {−1, 1} depend on the dimension
of the manifold n (modulo 8).
It’s also required that defining b0 = Jb∗J−1, we
demand that:

[a, b0] = 0, [[D, a], b0] = 0; (a, b ∈ A)

Given a Riemannian manifold, there’s a direct way to
assign (A,H,D) such that it reproduces all the informa-
tion the manifold held.
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Remark 18. The canonical triple associated to a (lo-
cally) compact Riemannian spin manifold:

• A = C∞(M), the algebra of smooth functions on
M;

• H = L2(S), the Hilbert space of square integrable
sections of a spinor bundle S →M ;

• D = DM , the Dirac operator associated to the Levi-
Civita connection lifted to the spinor bundle.

An application of a canonical triple can quickly be seen
on the circle S1

Example 5. We start by using the prescription of the
canonical triple:

• Obviously we put A = C∞(S1).

• Then by definition we also automatically have:
H = L2(S1), where the fibers are simply one di-
mensional C-lines.

• As the fibre is trivial and the total space is a cylin-
der (intrinsically flat), the connection is trivial and
the Dirac operator becomes: DS1 = −i∂ϕ.

Thus we have:

(
C∞(S1), L2(S1),−i∂ϕ

)
as the spectral

triple.

One might ask if this process works in reverse? If we’re
given a Spectral Triple, can we reconstruct the manifold
from just this information? This would make sense, all
things considered, as it would be a direct generalization
of Theorem 4. to fully differentiable / geometric spaces!
There in fact exist reconstruction theorems which state
that from the information of a real spectral triple; a struc-
ture which can be assigned only to special manifolds, one
can reconstruct the Riemannian manifold information di-
rectly, one to one. This is a fairly recent result and simply
stating it is somewhat involved, so we’ll satisfy ourselves
with the knowledge that it does exist [20].

Remark 19. Interestingly, even if one doesn’t provide
the algebra A, just by providing (H,D, γ, J) one can look
at the spectrum Σ of the operator D and from it recon-
struct quite a lot of information about the Riemannian
manifold.

An interesting result is that the set of isometric mani-
folds is a subset of isospectral manifolds (those with the
same spectrum of their Dirac operators).

This is an important result which will appear in the
forthcoming construction of the action principle for Spec-
tral Triples [17].

The final set of results that we’ll need are those con-
cerning almost-commutative spaces and specifically their
gauge symmetries.

Definition 35. Let M be a Riemannian spin manifold
with canonical triple (C∞(M), L2(S), DM ; JM , γM ) and
let (AF , HF , DF ; JF , γF ) be a finite spectral triple (i.e.

the algebra has finitely many characters ∼= the underlying
space is 0 dimensional).

The almost-commutative manifold M × F is then
defined by the real spectral triple:

M × F = (C∞(M,AF ), L2(S ⊗ (M ×HF ),

DM ⊗ 1 + γM ⊗DF ; JM ⊗ JF , γM ⊗ γF )
(15)

(AC Spectral Triple or ACST for short)

The intuition here is effectively: ”function valued ma-
trices” [ 5]; the finite space being a finite dimensional
matrix space and the functions are the C∞ ones on the
manifold M .

Remark 20 ( 12). The full symmetry group - that is
the group of automorphism α : A → A on an almost-
commutative manifold M × F - is given by:

G = G(M × F ) o Diff(M) (16)

where G(M × F ) is the ”gauge group” of the Spectral
Triple, defined as the inner unitary operator:

G(A,H; J) :=

{
U = uJuJ−1|u ∈ U(A)

}
where U(A) is the set of all unitary elements of the ∗-
algebra A. When ”applied” to the spectral triple, it gives:
U(A,H,D; J, γ)U∗ = (A,H,UDU∗; J, γ) meaning that U
commutes with both J and γ. This induces the ”inner
fluctuations” (inner meaning expressed purely in terms
of the algebra elements J and u as opposed to some ad-
ditional ”external” operator):

UDU∗ = D + u[D,u∗] + ε′Ju[D,u∗]J−1

With this, we’ve arrived at the end of the mathematical
background and it’s time to move on to physics, specif-
ically the reconstruction of the modern particle physics
models (similar to the Standard Model).

III. Physics: The Spectral Action and the Particle
Physics Models [17]

As the title suggests, the Spectral Action will be an al-
ternative approach to constructing the action of a physi-
cal system [12] [17][18], such that it reproduces the results
one would arrive at by integrating a Lagrangian over a
manifold.

Lagrangians and therefore actions are (at least in
physics) obtained by the principle of ”guess the one that
give the correct equations of motion” and I should start
off immediately by saying that this situation will be no
different; the correct spectral triple (A,H,D) needs to be
guessed and then a generic formula is applied to construct
the action from it. While this guessing process is by no
means more trivial than in the Lagrangian approach, it
turns out that if we do get a spectral action that repro-
duces particle physics models, the likes of the Standard
model for example, it is also automatically coupled to
Einstein and Weyl gravity as well as showing features
of Grand Unification Theories such as a relationship be-
tween the coupling constants. Also, the Higgs mechanism
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is implemented into the action automatically, in a sense
having become part of the noncommutative geometry!

A. The Standard Action

The laws of physics at low enough energies are com-
pletely contained in the scalar action:

S = SEinstein + SParticle Physics (17)

consisting of the Einstein action for gravity

SEinstein =
1

16πG

∫
R
√
gd4x

and the particle physics action :

SParticle Physics = SG + Sf + SGH + SH + SGf + SHf

containing all the kinetic and interaction terms for the
gauge bosons G (γ,W±, Z and gluons) of spin 1, the
Higgs field H and fermions f of spin 1/2 (quarks and
leptons).

When constructiong actions, we tend to consider sym-
metries of the Lagrangian as the key defining feature of
the underlying physics, since they imply conserved quan-
tities and thus decide many of the physical laws that
follow from said Lagrangian without any prior calcula-
tion. Considering this, it’s useful to state the symmetry
group of both the Einstein Lagrangian and the particle
physics Lagrangian.
The total symmetry group is:

G = U o Diff(M) (18)

where U = U(1)×SU(2)×SU(3) is the symmetry group
of the standard model; containing the U(1) charge of
Electrodynamics, the SU(2) weak-isospin and the SU(3)
color charge. Diff(M) is the diffeomorphism group of the
manifold M ; locally speaking the group of differentiable
coordinate transformations, which is the symmetry group
of general relativity.

After identifying the symmetry groups, we usually try
to construct all the physical objects that are invariant un-
der said symmetries and put them into the Lagrangian.
Then we use the Euler-Lagrange equations and throw
away those terms that produce unphysical results (for ex-
ample: a photon mass term of the form 1

2m
2AµA

µ isn’t
present in QED despite satisfying the required symme-
tries).

B. The Spectral Action

We now want to translate the above symmetries into
the language of (real) Spectral Triples (A,H,D; J, γ) and
following that consider as the action all those quanti-
ties that can be made invariant to those symmetries (i.e.
”scalar”).

We immediately notice that the form of the symmetry
group (18) corresponds exactly to the form one gets for an
almost-commutative manifold from Remark 16 and thus
the particle physics model will be formulated on such a

structure.
It should be noted that the stage we’re working with

is the Hilbert space H, with the algebra representation
on H and D; J, γ all being operators on it. One needs
to know what is meant by ”scalar” in this context. Usu-
ally, ”scalars” are complex-valued functions of algebra el-
ements on the underlying manifold. In the simplest case,
the algebra elements are themselves complex-valued and
therefore one can just take algebra products and imme-
diately get the necessary scalars to be integrated in the
action. On the other hand, when dealing with spinors
represented on some Hilbert space, one needs to take
functions from the Hilbert space to the complex num-
bers, say the Hilbert space product < ., . >: H → C,
and use those to make ”scalars”; for example < ψ,Dψ >
would be a valid candidate.

Having defined what scalars mean, we’re now ready to
look for all maps from the Hilbert space to the complex
numbers, such that they respect the symmetries of the
curved particle physics model (18) translated to Spectral
Triple language.

Starting with the gravity sector, since we want an
action with diffeomorphism invariance we’d want to
concern ourselves with the families of isometric man-
ifolds. Translating this into the algebraic language of
spectral triples [ 17], we’d obviously want to call upon
the correspondence between the metric of (M, g) and the
Dirac operator of (A,H,D). It was touched upon earlier
(Remark 19) that isospectrality of the Dirac operator is
the corresponding notion to isometry of the metric and
as such we have the statement which will underlie the
rest of the construction; we require from our action the
following :

The physical action depends only on the spec-
trum Σ of the Dirac operator D.

in direct analogy to the requirement that the Ein-
stein action be isometry invariant, and in fact as we’ve
seen from Remark 19 it is a more general condition.

This all falls well into the almost-commutative Spectral
Triple context - identifying the gravity sector with the M
part of the ACST gives us the second part of (18).

The standard model symmetry group is obviously more
phenomenologically motivated and doesn’t follow from
a principle as simple as ”general diffeomorphism invari-
ance” and thus it’s implementation will have to be done
much more so ”by hand” compared to the elegant ”ac-
tion must depend exclusively on Σ”. Considering almost-
commutative Spectral Triples, we need to pick the fi-
nite space F such that it’s gauge group corresponds to
U(1)×SU(2)×SU(3) as required by the particle physics
model. This turns out to be [17-19] exactly the choice:

AF = C⊕H⊕M3(C) (19)

where H are the quaternions, behaving similarly to
SU(2), and M3 is the space of 3x3 complex matrices.

As our ”function space” AF is finite dimensional - the
space of 3x3 complex matrices (finite basis of dim 18)
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times the space of quaternions ∼= 2x2 complex unitary
matrices (finite basis of dim 4) times a single complex
number (finite basis of dim 1), accounting for all the par-
ticles (including colour, chirality and antiparticles). The
basis elements of this finite space are usually labeled by
the elementary particles they represent.

The rest of the spectral geometry then follows [17] from
the definition of the almost-commutative Spectral Triple:

A = C∞(M)⊗AF
H = L2(M,S)⊗HF , D = /∂M ⊗ 1 + γ5 ⊗DF

J = JM ⊗ JF , γ = γM ⊗ γF
The concept of ”internal fluctuations of a Dirac oper-

ator ”; defined earlier as:

D = D0 +K + JKJ−1 K =
∑

ai[D0, bi]

ai, bi ∈ K; K = K∗

then essentially corresponds to gauge transformations
from particle physics. We’re exploiting the freedom we
have from requiring that our spectral triple be unitarily
equivalent to transformations of it’s gauge group.

Taking the almost-commutative approach, we’ve now
prepared the Spectral Triple one should use to construct
scalars which will constitute an action with the correct
symmetry group. The particle physics model gauge
freedom is encoded in the finite space while the gravity
background is in the requirement that the action only
depend on the spectrum of the total Dirac operator D.

What’s left is to ”guess” the correct scalar terms which
give the action and here Connes provides the correct
choice in his original paper [17]; the action is postulated
to be:

SSpectral =< ψ,Dψ > +Tr

(
χ

(
D

λ

))
(20)

where λ is some cutoff scale and χ is a smooth cutoff
function that goes to 0 as it’s argument becomes larger
than one. Usually, one also considers the square of the
Dirac. A few remarks are in order:

• The pure Dirac term < ψ,Dψ > makes use of the
Hilbert space inner product to create a scalar, to
be interpreted as the propagator term of all the
particles, while the second term takes the trace (in
the sense of the sum of eigenvalues) of an opera-
tor; again a reasonable way to create a scalar, to
be interpreted as the interaction and background
gravity terms.

• The χ function essentially allows us to consider gen-
eral ”operator-Laurent series” of the Dirac with the
requirement that their behaviour go to 0 as the
eigenvalues we consider become large.

• The proposed action obviously depends exclusively
on the spectrum of the Dirac operator as it’s the
only operator on the Hilbert space that appears in
the action.

C. Heat-Kernel

The final point is now to provide the expansion of the
trace-part of the action [12] and show that it truly does
reproduce all that was claimed earlier - gravity and all
the couplings between elementary particles on a curved
background. To do this, some non-trivial mathematics is
required; namely the Heat-Kernel formalism.

I’ll first introduce the results in a general setting and
then rapid-fire apply them to the particle physics model.
We’ll also want to restrict to χ being positive definite
meaning that it should be a function of the square of
the Dirac operator D2 as this has consequences on the
gravity portion of the action expansion.

Firstly, we’ll want to expand χ(P ) as a series in integer
powers of P , which is guaranteed by χ being a smooth
(analytic) function. Next we use the linearity of the trace
and for each term we apply the expansion:

Tr(P−s) =
1

Γ(s)

∫ ∞
0

ts−1Tre−tP dt

s.t. Re(s) ≥ 0;
where we again have the problematic term Tre−tP which
can luckily be expanded further (asymptotically, as t →
0) as the titular heat-kernel expansion:

Tre−tP '
∑
n≥0

t
n−m

d

∫
M

an(x, P )dv(x)

where m = dim(M), d is the order of P in D and dv(x) =√
g dmx is the volume element. In the usual case, we have

m = 4 and d = 2.

Combining these two equations, we get by complex
integration:

Tr(P−s) = ResΓ(s)|s=n−m
d
an

where an are the Seeley-de Witt coefficients, which are
known and can be expressed using the curvature scalars
of the underlying space, i.e. corresponding metric and
it’s derivatives.

Plugging this into the trace from the action, we get:

Trχ(P ) '
∑
n≥0

fnan(P ) (21)

where fn are given by the moments of the function χ:

f0 =

∫ ∞
0

χ(u)udu

f2 =

∫ ∞
0

χ(u)du

f2(n+2) = (−1)nχ(n)(0)

s.t. n ≥ 0, which are all just numerical integrals of some
function.

The general Seeley-de Witt coefficients for a Dirac op-
erator:

D =

[
γµ(Dµ ⊗ 1N +Aµ) γ5S

γ5S γµ(Dµ ⊗ 1N +Aµ)

]
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are known in the literature [17] and are as follows:

a0 =
λ4

4π2

∫
√
gd4xTr(1)

a2 =
λ2

4π2

∫
√
gd4x

[
R

12
Tr(1)− 2Tr(S2)

]
a4 =

1

4π2

∫
√
gd4x

[
Tr(1)

360

(
3Rµ;µ

− 9

2
CµνρσC

µνρσ +
11

4
R∗R∗

)
+Tr

(
(DµS + [Aµ, S])2 − R

6
S2

)
− 1

6
TrFµνF

µν + TrS4 − 1

3
Tr(S2)µ;µ

]
where R∗R∗ ≡ 1

4ε
µνρσεαβγδR

αβ
µνR

γδ
ρσ. In short, as inte-

grals of curvature and connection scalars. The traces over
unity depend on the dimension of the space one works
with; 1N being the dimension of the finite dimensional
space AF in the particle physics model case.

D. Back To the Particle Physics Model

The correct action functional for the particle physics
model is given by Connes [17] then as:

SSpectral =< ψ,Dψ > +Tr

(
χ

(
D2

λ2

))
What’s left is to provide details on how

(HF , DF ; JF , γF ) for the finite dimensional particle
physics sector of the almost-commutative Spectral Triple
(M ×F ) look. To start, recall that AF = C⊕H⊕M3(C)
and a basis is chosen on the Hilbert space HF such
that the basis elements correspond to the elementary
particles. The quarks Q and leptons L are denoted on
H as:

ψQ =

 uL
dL
dR
uR

 ψL =

 νL
eL
eR


The Dirac and J are taken to satisfy the real spectral

triple axioms and γN+1 = γ5.

Taking the general internal fluctuations of the Dirac
in the context of the gauge group U(1)×SU(2)×SU(3)
imposed on the almost-commutative space then exactly
reproduces connection terms which can be identified with
the particle physics gauge bosons, but even more so, sat-
isfying the ACST axioms makes room naturally for an
additional scalar field H which wasn’t manually included
in any way. This corresponds to the Higgs with the cor-
rect couplings to the rest of the particles.

After some calculations, one arrives at the kinetic
terms for quarks and leptons: 〈ψQ, DQψQ〉, 〈ψL, DLψL〉,
where Dq and Dl are equivalent to the particle physics
model’s covariant derivatives, including the interactions
of the different gauge bosons and Higgs with the quarks

and leptons. The explicit form of these operators is
fairly complicated but in essence the diagonals contain
the gauge boson terms of the form:

Dµ ⊗ 12 −
i

2
g02A

α
µσ

α − i

6
g01Bµ ⊗ 12

where Aαµ are the weak-isospin gauge bosons, σ are the
SU(2) generators and Bµ is the QED photon boson. Off
the diagonal, there are either zeroes or the 3x3 family
mixing matrices kd, ku and ke and Higgs terms. Obvi-
ously all of the ingredients of the particle physics model
are here, following solely from the gauge freedom imposed
on the Dirac by requiring that the finite space have the
same gauge group as the Standard Model (and in fact
the Higgs is reproduced for free). For a more complete
account of the details of the calculation, I again refer to
Connes’ original paper [17].

E. The Bosonic Action

As we’ve seen, < ψ,Dψ > takes care of the quark
and lepton kinetic terms and what’s left is to evaluate

the Trace Tr

(
χ

(
D2

λ2

))
. Following through on the Heat

kernel formalism for a general operator P = D2

λ2 , we get:

SSpectral =
45λ4

4π2
f0

∫
d4x
√
g

+
3λ2

4π2
f2

∫
d4x
√
g

[
5

4
R− 2y2H∗H

]
+

f4
4π2

∫
d4x
√
g

[
5

160

(
12Rµ;µ + 11R∗R∗

− 18CµνρσC
µνρσ

)
+ 3y2

(
DµH

∗DµH − 1

6
RH∗H

)
+ g203G

i
µνG

µνi + g202F
α
µνF

µνα

+
5

3
g201BµνB

µν

+ 3z2(H∗H)2 − y2(H∗H)µ;µ

]
+O

(
1

λ2

)
where x, y, z are some combinations of the traces of the
family mixing matrices.

From the action, we can recognize the familiar physical
terms as:

• the Einstein gravity term
∫
d4x
√
gR with the factor

15λ2

16π2 f2

• the Cosmological constant term
∫
d4x
√
g with the

factor 45λ4

4π2 f0

• the Yang Mills terms GiµνG
µνi, FαµνF

µνα, BµνB
µν

with factors f4
4π2 g

2
02, f4

4π2 g
2
03 and f4

4π2
5
3g

2
01
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• the Weyl conformal gravity term CµνρσC
µνρσ with

the factor − f4
4π2

9
16

• and very importantly the Higgs terms

− 3λ2f2
2π2 y2|H|2 + f4

4π2 3z2|H|4 + f4
4π2 3y2|DµH|2,

exactly reproducing the Mexican hat potential.

As we see, all the key gravity + particle physics model
terms appear in the action along with correction terms
(expected only to be observable at higher order energies).
Unlike the usual particle physics models, there seem to
exist certain relations between the coupling constants ob-
tained by this theory; for example all the couplings con-
stants of the Yang Mills terms should be equal in any
standard particle physics model and thus we should have:

g203 = g202 = 5
3g

2
01, 15λ2

4π2 f2 = 1
κ2
0

and
g203f4
π2 = 1. This issue

is solved through renormalization, by saying the obtained
quantities as they appear in the action are correct at some
high cutoff energy where unification is in progress and if
we want the coupling constants as observed, we should
renormalize them to their physical, low-energy, mutually
independent values. This will be elaborated on in the
conclusion.

Having completed this, we have a Standard Model-
like particle physics model on a curved background with
higher order couplings and unification predictions. To
proceed from here, one would vary the action and repro-
duce all the equations of motion and proceed with the
theory as usual (canonical quantization, etc.).

IV. Conclusion

In this paper, the goal was to collect the information
understandable to a student at a predoctoral level and
get them started on the road to understanding the vast
subject of noncommutative geometry of Connes as well
as to demonstrate one of many interesting applications
of the spectral triple / spectral action approach, namely
the spectral formulation of a particle physics + gravity
model.

The first order of business was to motivate
and explain the equivalence between the topologi-
cal/differential/geometrical side on which gravity is for-
mulated and the algebraic side on which particle physics
is formulated. This was done through a rather long ar-
gument, the results of which can be summarized by the
following table:

Points on Topological Space (pure) States on the Algebra

C∞(M) Noncommutative Algebra

Vector Fields Derivations of Algebra

deRham Complex Derivation Based Calculus

Vector Bundles of Spaces Modules over Algebras

de Rham Cohomology Cyclic Homology

Riemann Manifold Spectral Triple (A,H,D)

Riemann Metric Spectral Distance (Dirac op.)

Atiyah-Singer theorem Connes-Moscovici Index Thm.

The remaining developments then include: the spectral
action, the heat kernel expansion and the application of
both to a particle physics + gravity model.

This approach is of course one of many and it’s impor-
tant to know where it succeeds and where it fails; namely
what it can and cannot do and where there’s work still
left to be done. Without further ado, some of the boons
are the following:

• This approach presents gravity and a particle
physics gauge theory in a unified framework, in the
algebraic language of spectral triples, without ref-
erencing ”background” physics or making any ex-
plicit distinctions between the way the two are pre-
sented.

• The Higgs field, necessary in standard particle
physics models to provide a gauge invariant mech-
anism for giving mass to the gauge bosons, is usu-
ally implemented by hand by means of spontaneous
symmetry breaking. In this approach however, it
comes about in an automatic way; purely by writ-
ing the correct gauge group, the spectral action
approach homes in on the (more or less) unique
theory presented here, which contains the Mexi-
can hat potential in its symmetry broken form. It
comes about as one of the curvature invariants of
the finite space.

• There’s also the fact that the Lagrangian obtained
from the spectral action principle contains fewer
free parameters than the usual particle physics La-
grangian does (albeit at accelerator energies of ∼
14 TeV, no one knows what happens after that)
meaning that they cannot be equal (again, at 14
TeV). If they’re expected to be equal (at some high
energies), this would mean that the free parameters
- the coupling constants - in the particle physics La-
grangian would have to exhibit some form of run-
ning coupling that would tend to unify some of the
coupling constants effectively reducing the number
of free parameters, in line with the spectral action
result. Taking this seriously, this result can serve
as a prediction of high-energy physics behaviour of
our modern particle physics / gravity models.

• Not every gauge theory fits into this framework; in
fact the Standard Model-like particle physics mod-
els discussed here are among the simplest theories
that can be described by this formalism [21]. Any
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considerably simpler setup tends to fail one of the
many conditions required for the whole thing to
work (real spectral triple conditions, etc.) This can
be used as a mechanism for selecting what theories
to look at, which helps in looking for new physics as
well as giving us a satisfactory statement that the
Standard Model is in some sense ”minimal com-
plexity”!

On the other hand, some of the main drawbacks are:

• The particle content of the particle physics model
still has to be put in by hand; there is no mechanism
to tell us why there are exactly 3 fermionic fami-
lies, etc., although some people have speculated on
this subject, but no definitive / accepted results are
known.

• The manifold which we’re trying to describe has to
be Riemannian for the whole spectral action ap-
proach to (completely) work. On Lorentzian man-
ifolds, a Dirac operator can still be found , and in
fact work is being done [ 22- 24] (and is more or
less complete) to extend the reconstruction theo-
rems of Connes to Lorentzian manifolds. Where
the approach nevertheless fails is when one tries
to use the heat-kernel expansion on a Lorentzian
Dirac operator, as the result only holds for elliptic
operators and the rest of the calculation cannot be
carried out. The solution is to do everything for
a Riemannian manifold and then Wick-rotate once
the action / equations of motion are obtained, but
this also runs into problems of its own [25].

• The spectral triple yields a classical, non-quantized
action and canonical quantization has to be done as
it’s usually presented in textbooks that just start
from the action. Implementing the spectral action
principle directly into a path-integral framework is
an open problem and work is being done in this
area. The basic idea is that the different ”paths”
are different spectral triples with different Dirac op-
erators and one has to sum over all Dirac operators
to obtain the physical quantized action [26]. This
would provide quantization at an elementary for-
malism level rather than after we already have the
completely familiar action and physical theory, but
its far from completion.
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21 Iochum, Bruno, Thomas Schücker, and Christoph Stephan.
”On a classification of irreducible almost commutative ge-
ometries.”
Journal of mathematical physics 45.12
(2004): 5003-5041.

22 Franco, Nicolas.
”Temporal Lorentzian spectral triples.”
Reviews in Mathematical Physics 26.08
(2014): 1430007.

23 Van Den Dungen, Koen.
”Krein spectral triples and the fermionic action.”
Mathematical Physics, Analysis and Geometry 19.1
(2016): 4.

24 Devastato, Agostino, et al.
”Lorentz signature and twisted spectral triples.”
Journal of High Energy Physics 2018.3
(2018): 89.

25 Barrett, John W.
”Lorentzian version of the noncommutative geometry of
the Standard Model of particle physics.”
Journal of mathematical physics 48.1
(2007): 012303.

26 Hale, Mark.
”Path integral quantisation of finite noncommutative ge-
ometries.”

Journal of Geometry and Physics 44.2-3
(2002): 115-128.


