
Cellular senescence occurs in response to many differ-
ent triggers, including DNA damage, telomere dysfunc-
tion, oncogene activation and organelle stress, and has 
been linked to processes such as tumour suppression, 
tissue repair, embryogenesis and organismal ageing. 
Hayflick and Moorhead demonstrated in 1961 that nor-
mal cultured human fibroblasts display a finite capacity 
for cell division before entering an irreversible growth 
arrest known as replicative senescence1. This led to the 
hypothesis that tissue ageing is caused by cells progres-
sively losing their ability to proliferate, which is essen-
tial to replace damaged cells that naturally accumulate 
over time2. However, it took several decades to develop 
tools to prove that senescent cell accumulation promotes 
organismal ageing and dysfunction.

The first hurdle involved identifying selective mark-
ers to detect these cells in living tissues. Senescence- 
associated-β-galactosidase (SA-β-gal) activity, a simple 
colorimetric assay, was one of the first biomarkers 
described, and became instrumental in demonstrating 
that cells with features of senescence accumulate at sites 
of ageing-associated diseases and in aged tissues in a 
variety of mammals. A distinctive feature of senescent 
cells is the increased expression of cell cycle-inhibitory 
proteins, collectively known as cyclin-dependent kinase 
inhibitors. The cyclin-dependent kinase inhibitor with 

the most prominent role in senescent cell accumulation 
during ageing is p16INK4A — hereafter referred to as p16 
(refs3,4) — as it is crucial for durably maintaining the 
state of proliferative arrest. Indeed, mice lacking p16 are 
predisposed to spontaneous tumour formation5. In the 
late 1990s, it was found that cellular senescence is pre-
maturely induced by excessive oncogenic signalling or 
loss of tumour suppression6. Senescence induction was 
later shown to be caused by aberrant DNA replication 
and DNA damage accumulation7,8, thus restricting the 
proliferation of damaged precancerous cells. However, 
none of these features is universal for senescent cells, and 
it is important to test several biomarkers simultaneously 
to define the senescence state.

To reconcile the seemingly opposing pro-ageing and 
anticancer roles of senescent cells from an evolution-
ary perspective, senescent cells were proposed to fit the 
antagonistic pleiotropy theory of ageing, which posits 
that natural selection favours genes that promote repro-
ductive fitness early in life, which may be accompanied 
by unselected consequences with negative effects later in 
life9, although this has not been proven10. Alternatively, 
it is conceivable that evolutionary cost and benefit the-
ory is relevant for senescence. This theory implies that 
senescent cells have beneficial effects throughout life 
(for example, limiting tissue damage and suppressing 
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tumorigenesis), but the cost of these effects overcomes 
the benefits in old age. Several approaches have recently 
enabled the establishment of a causative role for senes-
cent cells in many diseases. These include the develop-
ment of INK-ATTAC11 and p16-3MR12 transgenic mouse 
models in which p16-expressing cells can be selectively 
eliminated, and of senolytic and senomorphic phar-
macological agents. Senolytics target senescent cells 
for elimination, whereas senomorphics modulate the 
properties of senescent cells without eliminating them13.

In this Review, we first describe the properties of senes-
cent cells and the mechanisms that promote this pheno-
type. We then discuss the implication of senescent cells 
in diverse biological processes, and how their removal or 
the attenuation of their properties could be exploited for 
therapeutic intervention and to increase healthspan.

Inducers and features of cellular senescence
Cellular senescence is a stable and terminal state of 
growth arrest in which cells are unable to proliferate 
despite optimal growth conditions and mitogenic stimuli 

(Boxes 1,2; Fig. 1). Senescent cells have increased resist-
ance to apoptotic cell death owing to upregulation of cell  
survival pathways, including the BCL-2 family of anti
apoptotic proteins, even on exogenous stress exposure14,15.  
Whether this prolonged viability is the result of selec-
tion for the most death-resistant cells or whether it is an 
intrinsic property of the senescence programme, espe-
cially in vivo, remains to be established. The molecular 
mechanisms that determine the choice between apop-
tosis and senescence remain unclear, but it is possible 
that cell fate depends on the intensity and duration of 
the initial stimulus, as well as the nature of the damage 
and the cell type16. Because senescence and apoptosis 
programmes converge on crucial components, includ-
ing activation of the p53 pathway, it is also possible that 
senescent cell resistance to apoptosis depends on p53 
levels and activity17. Although senescence was believed 
to be a permanent condition of cell cycle arrest, recent 
evidence indicates that, at least in the context of tumour 
formation and anticancer therapies, the establishment of 
cellular senescence might involve epigenetic mechanisms 

Box 1 | Senescence biomarkers

A major limitation in the senescence field is the lack of single, universal or model-specific biomarkers to identify 
senescent cells in culture or tissue samples. At present, the identification of senescent cells relies on a combination 
of multiple markers that, when present simultaneously, can discriminate between stably arrested senescent cells and 
quiescent or differentiated counterparts.

The first and still the most widely used biomarker to detect senescent cells in cultured cells and in fresh tissue samples 
is the accumulation of a lysosomal enzyme termed ‘senescence-associated-β-galactosidase’ (SA-β-gal)275. This marker is 
detectable by histochemical staining in most senescent cells and is generally not found in presenescent, quiescent or 
immortal and transformed cells, although SA-β-gal can also accumulate in serum-starved or overconfluent cells in tissue 
culture and may mark a specific subpopulation of macrophages in vivo as part of a reversible response to immune stimuli276. 
Lipofuscin accumulation is another feature of senescent cells. A recently developed method based on biotin-linked Sudan 
black B analogue is emerging as a reliable detection system to trace senescent cells in a variety of cell and tissue types277.

Another peculiarity of senescent cells is the abnormally enlarged and flat morphology with disproportionate increase 
in the cytoplasm-to-nucleus ratio. While this bulky cytoplasm was originally described as a feature accompanying the 
establishment of cell senescence, a recent study suggests that increased cell size may play a causative role in driving 
the senescence-associated growth arrest278. In addition, in vivo, SA-β-gal-positive senescent cells have increased cell 
size compared with SA-β-gal-negative cells as identified on a single-cell level279. Another obvious marker for senescent 
cells is the lack of DNA replication, which is typically detected by the incorporation of nucleoside analogous (for example, 
5-bromodeoxyuridine or [3H]thymidine) or by immunostaining for proliferation markers, such as PCNA and Ki-67. These 
markers do not distinguish between senescent cells and quiescent or differentiated postmitotic cells.

p21 and p16 are two cyclin-dependent kinase inhibitors that are components of the tumour suppressor pathways 
governed by p53 and RB, and often accumulate in senescent cells. Because p21 and p16 expression levels are sufficient 
to establish and maintain the senescence-associated growth arrest, they are used to identify senescent cells in tissues 
and cultured cells. p16, in particular, was used as a surrogate senescence marker for the generation of engineered mouse 
models where selective eradication of senescent cells has been tested. However, not all senescent cell types express p16 
as it can be expressed also by some tumour cells, especially those that have lost RB functions280.

Nuclear senescence-associated heterochromatin foci (SAHF) are also used to identify senescent cells, but they appear 
to be specific to the senescence programme induced by activated oncogenes and DNA replication stressors52. Persistent 
DNA damage response factors accumulating at sites of damage as cytologically detectable nuclear foci are also used as 
markers of senescent cells, and when accumulating at telomeric sequences, telomere-associated foci represent a robust 
marker of the senescent state24,35,281.

Lastly, components of the senescence-associated secretory phenotype (SASP), mainly the proinflammatory cytokines 
interleukin-6 (IL-6) and IL-8, may be used at the transcript and protein levels to evaluate general tissue or cell culture 
senescence. However, SASP alone cannot be used as a reliable senescence biomarker: indeed, senescence triggered by p16 
overexpression does not entail an altered SASP transcriptional programme85. Overall, the search for universal senescence 
biomarkers is constantly challenged by the evidence that senescence phenotypes are highly heterogeneous and may differ 
depending on the initial trigger and the cell type under study. Therefore, transcriptomic and proteomic studies up to the 
single-cell level in relevant cell and tissue types will be of paramount importance to find unique or common markers of the 
senescence state, including cell surface molecules that will allow the prospective isolation of senescent cells from aged and 
diseased tissues. More recently, the development of innovative imaging-based tools and fluorescent tracers to monitor in 
real time senescence burden and monitor the therapeutic activity of senotherapies in clinical samples gained the interest of 
the scientific community282–284 and may represent a turning point for senescence-based translational medicine applications.

INK-ATTAC
Transgenic mouse model  
with drug-inducible caspase  
8 under the control of a 
minimal p16 promoter 
element active in senescent 
cells to allow selective 
elimination of p16-expressing 
senescent cells.

p16-3MR
Transgenic mouse model 
expressing a trimodal 
reporter of red fluorescent 
protein, luciferase and herpes 
simplex virus thymidine kinase 
under the control of the p16 
promoter to allow tracking and 
elimination of p16-expressing 
senescent cells.
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that reprogramme cancer cells towards a certain degree 
of stemness in a cell-autonomous fashion18. Of note, 
the establishment of senescence is a dynamic process, 
whereby overlapping but distinct molecular pathways 
are engaged at different stages, from immediately on cell 
cycle exit to late, senescence stages19.

Cellular senescence and the DNA damage response. 
Several stressors can induce cellular senescence. 
Nuclear DNA damage is often reported as a commonly 
underlying cause of senescence, mainly in the form 
of DNA double-strand breaks (DSBs)20 that activate 
the DNA damage response (DDR) pathway (Fig. 1). DDR 
exerts checkpoint functions to block cell cycle progres-
sion and prevent the propagation of corrupted genetic 
information to daughter cells. Some DDR factors accu-
mulate at sites of DNA damage and form cytologically 
detectable nuclear foci composed of extended chroma-
tin modification events, such as the phosphorylation of 
histone H2AX, and the proteins associated with them, 
including MDC1, 53BP1 and the activated form of the 
kinase ataxia telangiectasia mutated (ATM)21. These foci 
mark individual sites of DNA damage and contribute 

to checkpoint enforcement and cell cycle arrest, until 
damage has been repaired. If DNA damage persists, it 
causes prolonged DDR signalling and protracted pro-
liferative arrest in the form of cellular senescence22. 
The recent demonstration that persistent DDR foci 
observed in cultured senescent cells contain unrepaired 
DSBs23 supports the notion that cellular senescence is 
akin to prolonged checkpoint activation. Inhibition of 
DDR signalling kinases (ATM, ATR, CHK1 and CHK2) 
allows senescent cells to re-enter the cell cycle7,24,25. 
At the bottom of the DDR cascade, the tumour sup-
pressor p53, which is a target of ATM and its paralogue 
ATR, is activated and stimulates the expression of the 
cyclin-dependent kinase inhibitor p21, an essential 
mediator of senescence-associated cell cycle arrest. 
p16, an inhibitor of CDK4 and CDK6, is also key in 
several types of senescence26; p21 is activated early on 
senescence entry and p16 is activated later, probably to 
maintain the senescence phenotype27. In addition to the 
DDR cascade being activated, the tumour suppressor 
ARF stabilizes p53, which contributes to the induction 
of senescence28. Efforts have been devoted to assessing 
the contribution of these two major routes, the DDR and 
ARF pathways, to p53-dependent senescence establish-
ment especially in response to oncogenic challenges. 
The original view, based mainly on murine studies, was 
that the DDR and ARF play antagonistic roles, as ARF 
was transcriptionally activated during tumorigenesis 
in a DDR-independent manner29,30. More recently, 
a tight regulatory network in human cancer models was 
reported, whereby ATM suppresses ARF levels and ARF 
acts as a secondary barrier to cancer progression when 
ATM is inactivated31. Consistent with this temporal reg-
ulation, DDR precedes ARF engagement, whose activa-
tion is detected at later stages of cancer progression and 
less frequently than DDR.

Telomere shortening and damage. One of the first and 
best characterized mechanisms of cellular senescence 
induction is telomere shortening. As the standard DNA 
replication apparatus is unable to fully duplicate chro-
mosomal DNA ends, in the absence of telomere mainte-
nance mechanisms such as the expression of telomerase 
or recombination among telomeres, telomeres shorten 
with each round of DNA replication. Below a certain 
length, the loss of telomere-capping factors or protec-
tive structures makes critically short telomeres resemble 
one-ended DSBs and thus triggers a DDR that is very 
similar to that triggered by DNA DSBs24,32 (Fig. 1). One or 
a few DDR signalling telomeres are sufficient to trigger 
replicative cellular senescence33, and forced expression 
of telomerase prevents cellular senescence and promotes 
unlimited cell proliferation34.

Persistent DDR activation occurs also at telomeres 
that are not critically shortened, in non-dividing cells 
exposed to exogenous genotoxic treatments and in 
non-dividing ageing cells, because repair is much less 
efficient when DSBs are localized within telomeres35–37. 
As telomeric DSBs persist, cellular senescence is 
established and maintained. Thus, persistent DDR 
activation at telomeres, which is a trigger of cellular 
senescence, can occur both upon telomere shortening 

Box 2 | Senescence and autophagy

Dysfunctional cellular organelles, such as mitochondria and lysosomes, are usually 
degraded through the activation of an intracellular degradation system named 
‘autophagy’285. However, whether autophagy promotes senescence induction or is an 
alternative prosurvival mechanism lost during ageing is a matter of intense scientific 
investigation. Indeed, it was reported that a selective autophagy pathway, via 
mammalian target of rapamycin (mTOR) activation, contributes to sustain the protein 
synthesis of many senescence-associated secretory phenotype factors mainly in 
oncogene-induced senescent cells and that downregulation of several autophagy 
regulators delays the establishment of oncogene-induced senescence286,287. More 
recently, LC3B, a ubiquitin-like autophagic protein, was found to be associated with 
the nuclear envelope protein lamin B1 and to contribute to its degradation in the 
lysosomes in oncogene-induced senescent cells59,60. Importantly, lamin-associated 
chromatin domains are also transported out from the nucleus to the lysosomes via the 
same mechanism and contribute to the presence of cytosolic chromatin fragments 
that accumulate in senescent cells. Inhibition of autophagy prevents lamin B1 
degradation and ensures nuclear envelope integrity in senescent cells59.

In the context of therapy-induced senescence for cancer cells, it was also shown that 
autophagy was triggered as a consequence of senescence establishment to cope with 
the increased load of accumulating toxic macromolecules, and its pharmacological 
targeting led to senescent cell elimination288. However, autophagy has also been 
considered to suppress senescence by promoting the degradation of damaged 
organelles and other cellular components, and several studies have supported such a 
view. In adult muscle stem cells, basal autophagy maintains stemness by repressing 
senescence. During ageing, the autophagic activity in muscle stem cells (satellite cells) 
declines alongside stem cell regenerative capacity, with consequent accumulation of 
senescent satellite cells in geriatric mice. Autophagy restoration in old satellite cells 
prevents senescence and rescues their regenerative capacity289. Similarly, autophagy 
protects against oxidative stress-induced senescence. Enhancing autophagic activity 
under excessive oxidative stress by mTOR inhibition delays cellular senescence and 
functionally restores both mitochondrial and lysosomal functions290. Further supporting a 
role of autophagy in preventing senescence, a recent high-throughput screening aimed 
at identifying compounds that alleviate replicative senescence revealed that the ataxia 
telangiectasia mutated (ATM) inhibitor KU-60019 enhances the autophagic flux by 
restoring functional lysosomal activity by blocking the phosphorylation of the vacuolar 
protein ATP6V1G1. ATM inhibitor treatment also recovered mitochondrial functions and 
alleviated senescence phenotypes274. Together, these seemingly opposite roles may 
reflect a complex and reciprocal regulation of autophagy and cell senescence that can 
be linked to several senescence triggers, distinct cell types and a unique spatio-temporal 
activation of the autophagic programme acting in the senescence regulatory network.
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in proliferating cells and upon telomeric DNA dam-
age also in non-proliferating (quiescent or terminally 
differentiated) cells, independently of telomere length38.

Oncogene-induced senescence. Oncogene activation is 
a powerful inducer of cellular senescence. Oncogene 
expression triggers an initial hyperproliferative phase 
that is intrinsically associated with altered DNA rep-
lication, which eventually engages DDR pathways 
and causes senescence7,8,39. This process is known as 
oncogene-induced senescence (OIS). Loss of tumour 
suppressor expression can also induce proliferation 
arrest, as exemplified by PTEN loss-induced cellular 
senescence (PICS). Although initially PTEN loss-induced 

cellular senescence was not associated  with  DDR  
activation40, it was later found to be associated with 
hyperproliferation, DDR engagement and cellular senes-
cence in vivo41. Noteworthy, unlike oncogenic RAS or 
BRAF, activation of the PI3K−AKT pathway promotes 
p53-dependent senescence often in the absence of 
detectable hyperproliferation and strong DNA dam-
age accumulation42,43, suggesting distinct underlying 
mechanisms.

Telomeres are hypersensitive to DNA replication 
stress, including that induced by oncogenes and accu-
mulation of oncogene-induced telomeric dysfunction, 
and a DDR has been observed in hyperplastic cancer 
lesions in humans44. Reactive oxygen species (ROS) 
accumulate in tumours, and in this context, in addi-
tion to their recognized role as DNA-damaging agents, 
they can act as signalling molecules that mediate pro-
mitogenic oncogene functions. Recently, this paradox-
ical role of ROS in promoting cell proliferation and 
senescence-associated DNA damage was partly solved 
by the unexpected discovery that oncogene-induced 
ROS, generated by NADPH oxidases, can induce cellu-
lar senescence by boosting the initial hyperproliferative 
phase associated with altered DNA replication and DNA 
damage accumulation45 (Fig. 1).

Mitochondrial dysfunctions and cellular senescence. 
Increased oxidative stress in senescent cells has been 
linked to the accumulation of dysfunctional mito-
chondria. Indeed, senescent cells are characterized 
by changes in mitochondrial mass, membrane poten-
tial and mitochondrial morphology46. Dysfunctional 
mitochondria may play an important role in senes-
cence establishment, as depletion of mitochondrial 
sirtuins, a group of evolutionarily conserved proteins 
that regulate ageing across different species, as well as 
selective chemical inhibition of mitochondrial func-
tion, triggers senescence47. There is evidence in sup-
port of a reciprocal influence between nuclear DNA 
damage and mitochondrial dysfunction48. Of note, 
mitochondrial dysfunction-associated senescence (MiDAS), 
which is characterized by a distinct phenotype, exhib-
its a unique cell-non-autonomous programme that 
is potentially responsible for the altered metabolism 
and aberrant adipocyte differentiation observed in 
aged animals47.

Chromatin changes in senescent cells. Most senes-
cent cells display profound changes in the epige-
nome and chromatin organization. These changes 
have been linked to both the cell-autonomous and 
paracrine aspects (that is, the effect on surrounding 
cells) of senescence-associated proliferation arrest. 
Senescence-associated heterochromatin foci (SAHF) 
are spatially organized heterochromatic domains that 
can be detected as dense 4′,6-diamidino-2-phenylindole 
(DAPI)-positive nuclear structures that are enriched in 
repressive chromatin marks and proteins, including tri-
methylated histone H3 Lys9 (H3K9me3), heterochro-
matin protein 1 (HP1), high mobility group protein 
A (HMGA) factors, histone variant macroH2A and 
histone co-chaperones HIRA and ASF1A49–51. However, 
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Fig. 1 | Senescence drivers and phenotypes. Nuclear DNA damage is often causatively 
associated with senescence establishment. DNA damage activates a signalling cascade 
defined as DNA damage response (DDR), characterized by phosphorylated histone 
H2AX (γH2AX), 53BP1 and MDC1, the apical kinases ataxia telangiectasia mutated (ATM) 
and ATR and the downstream kinases CHK2 and CHK1. Signals ultimately converge on 
p53 activation, which in turn elicits cell cycle arrest. Prolonged DDR activation triggers 
senescence. One or a few DDR signalling telomeres, the ends of chromosomes, are 
sufficient to trigger replicative cell senescence. Oncogene activation is also a powerful 
senescence trigger. Specifically, most activated oncogenes, partly via reactive oxygen 
species (ROS) production, induce hyperproliferation and altered DNA replication 
patterns that ultimately result in replication stress and DNA damage accumulation at 
fragile sites, which include telomeres. Besides prolonged DDR activation, senescence 
features include cell cycle arrest (by upregulation of p21 and p16 cell cycle inhibitors), 
oxidative damage (as detected by increased ROS levels), upregulation of the BCL-2 
family of antiapoptotic proteins, which induce resistance to apoptosis, metabolic 
changes (including senescence-associated-β-galactosidase (SA-β-gal) accumulation), 
senescence-associated heterochromatin foci (SAHF) and a senescence-associated 
secretory phenotype (SASP).
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SAHF are not universal markers of senescence; they 
are most robustly observed upon oncogene activation 
and form in a DNA replication- and ATR-dependent 
manner52. SAHF were originally proposed to repress 
genes promoting cell cycle progression49,53,54. Rather, 
SAHF enforce a DDR-resistant heterochromatin struc-
ture that restrains DDR signalling52. Indeed, treatment 
with histone deacetylase (HDAC) inhibitors, which 
induce chromatin relaxation, boosts DDR signalling 
with consequent cell death by apoptosis. This treatment 
is probably the first reported example of a successful 
senolytic approach52, which was later supported by 
the reported senolytic activity of the HDAC inhibitor 
panobinostat55. HDAC inhibitors can also induce cellular 
senescence in normal human fibroblasts, which may be 
related to their impact on the DDR56.

Another chromatin feature of senescent cells is the 
unfolding of constitutive heterochromatin domains char-
acterized mainly by distension of pericentromeric satel-
lite sequences, which was observed in different species 
and following different modes of senescence induction57. 
These changes in chromatin structure were not linked 
to the selective removal of repressive histone marks, 
but were associated with changes in nuclear structural 
proteins, including breakdown of the nuclear lamina57. 
Loss of nuclear lamina can lead to the release of cytosolic 
chromatin fragments (CCFs) in the cytoplasm of senes-
cent cells58–60. Although yet unprobed, in the context of 
oncogene-induced DNA replication, hard-to-replicate 
genomic regions such as fragile sites61, telomeric 
sequences44 and repetitive DNA62 probably contribute 
to CCFs. It remains unclear whether CCFs are formed 
only in deeply senescent cells. Importantly, CCFs dic-
tate senescence-associated paracrine functions through 
the activation of the cyclic GMP–AMP synthase (cGAS) 
and the adaptor stimulator of interferon genes (STING) 
pathway (discussed later). Low doses of HDAC inhib-
itors have been reported to reduce CCFs and suppress 
the senescence-associated secretory phenotype (SASP)63.

Recent technological advances in genome-wide 
mapping of chromatin modifications led to the gener-
ation of a molecular blueprint of senescence establish-
ment and maintenance. During replicative senescence, 
late-replicating, gene-poor regions display widespread 
DNA hypomethylation, whereas focal hypermethylation 
is seen at tumour suppressor genes. These observations 
led to the hypothesis that senescent cells may be epi
genetically primed for malignant transformation64. But 
this hypothesis was recently challenged by the obser-
vation that cells with OIS display only limited changes 
in methylation patterns compared with cells that have 
bypassed OIS, indicating that tumour-associated methy-
lome changes may arise stochastically and independently 
of the senescence state65. In contrast to what would 
be observed in the case of DNA methylation changes, 
oncogene-induced senescent cells and late replicatively 
senescent fibroblasts exhibit a marked increase in chro-
matin accessibility at the nucleosomal level, with most of 
the open chromatin regions mapping to regulatory ele-
ments and repeats66,67. Chromatin loosening at genomic 
repeats results in increased expression levels of trans-
posable elements, which are normally epigenetically  

silenced and dormant in unstressed cells67. Despite the 
well-accepted role of transposable elements in triggering 
genomic instability via transposition, the reactivation of 
transposable elements also contributes to mediate the 
non-cell-autonomous functions of senescent cells as 
detailed later62. Genome-wide analysis of H3 Lys4 tri-
methylation, H3 Lys27 trimethylation and H3 Lys27 
acetylation in senescent cells has also revealed the 
dynamic acquisition and depletion of large-scale chro-
matin domains that have been proposed to regulate the 
expression of key senescence downstream effectors68–72.

SASP composition and regulation
One potential mechanism through which senescent cells 
exert their pleiotropic biological functions is the tran-
scriptional activation of a SASP programme characterized 
by cytokines, chemokines, growth factors and extracel-
lular matrix (ECM) proteases, which may self-reinforce 
senescence or affect the local tissue microenvironment of 
senescent cells and possibly the entire organism (Fig. 2). 
SASP activation is a dynamic process that accompanies 
senescence establishment. SASP was originally defined as 
a robust secretory programme comprising dozens if not 
hundreds of bioactive factors73–76.

SASP composition varies depending on the cell type 
and the nature of the initial stimulus, with the oncogenic 
trigger greatly amplifying protein secretion compared 
with replicative or irradiation-induced senescence75. 
Despite some qualitative and quantitative differences 
among the SASP in different tissues and senescence 
models, a core SASP programme comprising mainly 
proinflammatory interleukin-6 (IL-6), CXC chemokine 
ligand 8 (CXCL8, hereafter named IL-8) and monocyte 
chemoattractant protein 1 (MCP1; also known as CCL2) 
was reported in all types of in vitro-generated senescent 
cells75. SASP not only includes proinflammatory mole-
cules but also enzymes involved in ECM remodelling, 
such as matrix metalloproteinases (MMPs)77, serine/
cysteine proteinase inhibitors (SERPINs)78 and tis-
sue inhibitors of metalloproteinases (TIMPs)79. More 
recently, a comprehensive unbiased quantitative pro-
teomic characterization of SASP led to the identifica-
tion of additional and diverse SASP effectors, released as 
soluble molecules or in exosomes79–81 with a set of com-
ponents previously reported to be enriched in human 
plasma during ageing and age-associated diseases82. 
Exosomes were recently identified as key mediators of 
the paracrine senescence effects of SASP as well as of its 
protumorigenic properties83,84.

Interplay between the DDR and SASP. p16 induction can 
arrest the proliferation of normal cells and drive cellu-
lar senescence but is not sufficient to induce a complete 
SASP85. Of note, persistent DDR signalling is often 
required to initiate inflammatory cytokine secretion86. 
Consistent with a role for upstream DDR elements in 
promoting both cell-autonomous and paracrine func-
tions of senescent cells, ATM, NBS1 and CHK2 prime 
SASP genes for activation, as depletion of these DDR 
upstream regulators dampens cytokine production in 
response to genotoxic stress86. Inhibition of p53 has the 
opposite effect, as it further enhances SASP following 

Exosomes
Extracellular vesicles produced 
by the endosomal compartment 
involved in intercellular 
communication.
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a senescence-inducing insult86, which may contribute 
to the generation of an inflammatory microenviron-
ment that favours senescence escape and malignant 
transformation.

Recently, ATM was found to regulate expression 
of SASP genes indirectly by mediating the removal of 
the histone variant macroH2A1.1 from SASP genes 
in response to DNA damage and oncogenic stress87. 
However, because DDR activation is a quick response 
and SASP establishment is slow, additional pathways 
must control SASP. Indeed, the activation of the 
stress-inducible MAPK p38 was proven both neces-
sary and sufficient to trigger growth arrest and SASP 
even in the absence of DNA damage88. Like ATM, p38 
induces the expression of SASP transcripts by increasing 
the activity of nuclear factor-κB (NF-κB), suggesting that 
although DDR and p38 activation are independent, they 
can converge on SASP activation.

Ageing is one of the factors that is consistently asso-
ciated with an increase in DDR in proliferating and 
non-proliferating cells, thus contributing significantly 
to the accumulation of senescent cells with age35,89. 
Incomplete DNA repair may further contribute to the 
accumulation of DNA lesions and DDR activation as 
well as to the widespread chromatin changes seen in 
different cell types and at the organismal level during 
ageing90,91. Moreover, DDR is a driver of metabolic repro-
gramming, which can enhance SASP92. Therefore, regu-
lation of SASP by the DDR via multiple pathways can be 
one of the routes by which the DDR drives age-related 
inflammation.

Transcriptional and epigenetic control of SASP. Several 
transcription factors and chromatin regulators have 
been implicated in the regulation of SASP, which is 
controlled mainly at the transcriptional level. NF-κB 
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Fig. 2 | SASP regulation. Senescence-associated secretory phenotype 
(SASP) activation is a dynamic process that accompanies cell cycle exit 
initiated by senescence triggers. A core SASP programme comprises 
mainly proinflammatory interleukin-6 (IL-6), IL-8 and monocyte 
chemoattractant protein 1 (MCP1), regulated in an IL-1-dependent 
manner, and enzymes involved in extracellular matrix (ECM) remodelling, 
such as matrix metalloproteinases (MMPs), serine/cysteine proteinase 
inhibitors (SERPINs) and tissue inhibitors of metalloproteinases (TIMPs). 
More recently, additional core SASP effectors released as soluble 
molecules or in exosomes were identified, including GDF15, STC1 and 
MMP1. DNA damage response factors, including the upstream DNA 
damage response kinase induce SASP genes via nuclear factor-κB (NF-κB). 
The mitogen-activated protein kinase p38 also induces SASP genes by 
increasing the activity of NF-κB. Activation of several transcription factors 
and chromatin regulators has been implicated in SASP activation and 
regulation. NF-κB the transcription factor CCAAT/enhancer-binding 
protein-β (C/EBPβ) bind promoters of SASP genes and regulate their 
activation. GATA4 regulates NF-κB and SASP genes indirectly via IL-1 
production. The mammalian target of rapamycin (mTOR) pathway also 

promotes SASP production through increased translation of subsets of 
mRNAs, including that encoding for IL-1α. In concert with transcription 
factors, the epigenetic reader bromodomain-containing protein 4 (BRD4), 
an acetylated histone-binding protein involved in oncogenesis, is recruited 
to superenhancers adjacent to SASP genes, thus contributing to the proper 
execution of cellular senescence. BRD4 binds acetylated histone H3 Lys27 
(H3K27), thus competing with Polycomb repressor complex 2 (PRC2), which 
methylates the same histone residue (to give trimethylated H3K27) for 
transcriptional repression. Consistent with this, PRC2 inhibits SASP genes 
in senescent cells. More recently, the DNA sensor cyclic GMP–AMP 
synthase (cGAS) and the adaptor stimulator of interferon genes (STING) 
have been reported to be major regulators of the SASP programme across 
species and senescence modes, presumably by activating NF-κB 
and interferon response factor IRF3 on recognition of cytosol 
DNA and cytosolic chromatin fragments (CCFs). Aberrant activation of the 
cGAS–STING pathway could be linked to the downregulation of DNases 
(for example, DNase 2 and TREX1), enzymes normally involved in 
cytoplasmic DNA degradation. ATM, ataxia telangiectasia mutated; 
cGAMP, cyclic GMP–AMP; IL-1R, interleukin-1 receptor.
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and the transcription factor CCAAT/enhancer-binding 
protein-β (C/EBPβ) bind promoters of SASP genes and 
regulate their activation74,93,94. Moreover, the transcrip-
tion factor GATA4 activates a plethora of genes involved 
in immune response and inflammation, including those 
encoding IL-6, IL-8, CXCL1 (also known as GROα), 
granulocyte–macrophage colony-stimulating factor, and 
ECM proteases and their inhibitors. Because GATA4 lev-
els increase following DDR activation and in senescent 
cells, it was proposed that GATA4 acts as the molecular 
link between DDR signalling and the subsequent NF-κB 
activation for full SASP establishment95,96, although 
GATA4 regulation of the NF-κB pathway happens indi-
rectly through increased expression and secretion of 
IL-1α, an upstream regulator of NF-κB97.

The JAK2–STAT3 pathway activates a subset of SASP 
factors with immunosuppressive properties in a model 
of senescence induced by PTEN loss. In this context, 
JAK/STAT inhibitors were effective in reprogramming 
the SASP to enhance chemotherapy and T cell-mediated 
clearance of cancer senescent cells98. Furthermore, JAK 
inhibitors alleviated frailty in aged mice99. SASP gene 
expression is temporally dynamic100, and temporal 
changes in NOTCH1 activity during senescence have 
been reported to modulate the composition of SASP. 
NOTCH1 levels increase early on, and NOTCH1 acti-
vates transforming growth factor-β and its effectors, 
while keeping under control the proinflammatory arm 
of the SASP cascade by repressing its positive regula-
tor C/EBPβ. At later stages, in deeply senescent cells, 
NOTCH1 levels are lower, and the SASP proinflam-
matory cytokines IL-1, IL-6 and IL-8 are induced94. 
Whether this function of NOTCH1 is linked to its 
recently reported role in direct ATM inhibition101,102 
remains unknown.

The epigenetic reader bromodomain-containing 
protein 4 (BRD4), an acetylated histone-binding protein 
involved in oncogenesis, is recruited to superenhancers 
adjacent to SASP genes in OIS103. BRD4 contributes to 
the proper execution of cellular senescence and acts, 
unexpectedly, as a tumour suppressor. Indeed, chemi-
cal and genetic inactivation of BRD4 blunts the SASP, 
limits OIS immune-mediated cell clearance and may 
thus fail to remove damaged cells that are prone to 
senescence escape71. However, a recent chemical screen 
identified a small molecule that degrades BRD4 and 
has senolytic activity104. Moreover, BRD4 was shown to 
positively regulate telomere elongation in murine and 
human cultures105. Thus, BRD4 inhibitors may limit 
SASP activation but also cause more cellular senes-
cence by promoting telomeric shortening. BRD4 binds 
to acetylated histone H3 Lys27, thus competing with 
Polycomb repressor complex 2 (PRC2), which meth-
ylates the same histone residue (producing trimethyl-
ated H3Lys27). Consistent with BRD4 and EZH2 (the 
catalytic core subunit of PRC2) competing for the same 
residue and having antagonistic functions, overexpres-
sion of EZH2 prevents entry into OIS through a variety 
of mechanisms, including DDR regulation and inhibi-
tion of the SASP gene expression programme106. The 
transcription-associated histone methyltransferase and 
oncoprotein MLL1 was also reported to be essential for 

SASP activation, but mainly through oncogene-induced 
hyper-replication and DDR engagement rather than 
direct transcriptional control of SASP genes107.

HMGB proteins also regulate the SASP. HMGB2 
directly binds and specifically regulates SASP gene 
expression in oncogene-induced senescent cells, and its 
depletion diminishes SASP without affecting the senes-
cence growth arrest108. HMGB1 functions mainly as one 
of the damage-associated molecular patterns, also known 
as alarmins109, that are released extracellularly to induce 
SASP-mediated paracrine senescence and alert the 
immune system110. Furthermore, increased nuclear pore 
density during OIS, which is key to establish SAHF, reg-
ulates SASP expression by mediating heterochromatin 
reorganization111.

SASP and innate immunity. The DNA sensor cGAS 
and the adaptor protein STING have been reported 
to be major regulators of the SASP programme across 
species, presumably by activating NF-κB and the inter-
feron response factor IRF3 (refs60,112,113). cGAS−STING 
activation occurs mainly through recognition of ‘self ’ 
double-stranded DNA or chromatin fragments in the 
cytosol of senescent cells114. cGAS−STING genetic 
depletion reduces the proinflammatory SASP and mit-
igates senescence immunosurveillance in senescence 
models in vivo. Adding to the complexity of SASP reg-
ulation, it was reported that aberrant activation of the 
cGAS−STING pathway could be linked to the downreg-
ulation of DNases (for example, DNase 2 and TREX1) 
that are normally devoted to cytoplasmic DNA degra-
dation, resulting in cytosolic accumulation of nuclear 
DNA during senescence establishment115. While the 
mechanisms causing the release of cytosolic chromatin 
in senescent cells are still under intense scientific inves-
tigation, these discoveries suggest that STING inhibitors 
could potentially be used for the treatment of age-related 
chronic inflammation116.

cGAS−STING is not the only innate immunity path-
way involved in SASP initiation and execution. The 
inflammasome, a multiprotein complex comprising 
caspase 1 and key regulators of the defence mechanisms 
against pathogens117, and Toll-like receptors, which reg-
ulate the inflammasome, have been reported to promote 
maturation and secretion of SASP factors during OIS73,118.

Senescent cells, especially when persisting for 
extended periods in culture or in vivo, display a pro-
found activation of type I interferon response and 
downstream targets. This distinctively strong induction 
of type I interferon was found to be partly caused by 
reactivation of transposable elements and consequent 
to cGAS−STING activation62. Treatment with nucle-
oside reverse-transcriptase inhibitors, which inhibit 
retrotransposition of transposable elements, limits the 
senescence-associated detrimental effects of SASP and 
ameliorates chronic inflammation in aged animals62,119.

Cellular senescence of stem cells
Stem and progenitor cells are key to maintain tissue 
homeostasis and organization during physiological turn-
over and following tissue and organ injury. The func-
tional capacity of stem cells, but not necessarily their 
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number, declines with age120. DNA damage and markers 
of DDR activation have been observed in various stem 
cell types in different tissues and species, during nor-
mal and pathological ageing121,122, suggesting that stem 
cells are not immune to DNA damage accumulation and 
DDR activation123.

Although the activation of DDR pathways is expected 
to preserve genome stability and stemness, there is evi-
dence that, following DNA damage, events regulated 
by the DDR lead to permanent cell cycle arrest with 
features of cellular senescence and cell differentiation. 
Indeed, exposure of mice to ionizing radiation leads 
to fur greying, which is due to damage-induced differ-
entiation of hair bulb melanocyte stem cells after one 
round of cell division124. Although some markers of 
cellular senescence, such as p16 and SA-β-gal activity, 
were not detected, differentiation of melanocyte stem 
cells was associated with persistent DDR activation 
and was enhanced in Atm-knockout mice124. Similarly, 
self-renewal of haematopoietic stem cells (HSCs) 
is inhibited by telomere dysfunction or exogenous 
DNA damage followed by the induction of lymphoid 
differentiation125. Single-cell transcriptomic analysis 
of human HSCs revealed a dose-dependent activation of 
senescence-like programmes in response to DSBs, which 
were characterized by activation of p53 and the induc-
tion of proinflammatory programmes that resulted in 
reduced clonogenic potential, engraftment capacity and 
lineage output on transplantation126. Similarly, accu-
mulation of DNA replication stress in HSCs from aged 
mice was linked to limited yet detectable HSC senes-
cence, unbalanced haematopoietic differentiation and 
myeloid skewing127. However, especially in humans, it 
remains to be clarified whether myeloid-restricted hae-
matopoiesis in elderly people results from increased 
myeloid-primed HSC differentiation or impaired 
lymphoid differentiation.

DNA damage, for example induced by ionizing radi-
ation, has been shown to promote differentiation and 
induce cellular senescence in mouse neural stem cells128. 
DNA damage led to a loss of expression of stemness 
genes and a general induction of a transcriptional profile 
indicative of differentiation into astrocytes. This cell dif-
ferentiation programme was controlled by ATM and by 
soluble factors, in particular through BMP2 signalling128. 
Lineage tracing experiments in vivo in irradiated mice 
confirmed the induction of expression of differenti-
ation markers in the subventricular zone of the brain, 
normally populated by neural stem cells128. Thus, DNA 
damage-induced cellular senescence can coincide with 
cell differentiation128,129.

Notably, in mouse embryonic stem cells, a p53-induced 
programme is associated with transcriptional activa-
tion of a differentiation programme and the repression 
of pluripotent stem cell genes130. Consistent with this 
observation, it was reported that senescence occurs in 
a programmed manner and contributes to mammalian 
embryonic development and tissue patterning, although 
mainly via induction of p21, p15 and mediators of the 
SASP rather than through overt DDR signalling131,132.

Altogether, these independent observations in mel-
anocyte stem cells, HSCs, neural stem cells, embryonic 

stem cells and whole embryos suggest that persistent 
genotoxic stress in stem cells, and possibly more broadly 
in the context of progenitors and less differentiated cells, 
can lead to cellular senescence with features of cell differ-
entiation. Although cellular senescence is not commonly 
considered a form of cell differentiation, as it is often the 
outcome of macromolecular damage, whereas cell dif-
ferentiation is not, the commonalities are striking: they 
both involve cell cycle exit with a distinct transcriptional 
programme often controlled by soluble factors. It is pos-
sible that the common use, from the very beginning, of 
fairly differentiated cells (most typically fibroblasts) for 
senescence studies may have prevented the discovery of 
cellular senescence as a stress-induced differentiation 
programme, and perhaps with a different research his-
tory, cellular senescence could be known as a form of 
DNA damage-induced cell differentiation.

Can postmitotic cells become ‘senescent’?
The observation that during ageing terminally differ-
entiated cells can accumulate persistent DNA damage 
and DDR markers35,89 prompts the question of whether 
persistent DNA damage signalling leads to the expres-
sion of cell cycle inhibitors and ultimately the estab-
lishment of cellular senescence, thus shifting cells from 
a non-dividing physiological state to a non-dividing 
pathological state. Although not extensively inves-
tigated, and mainly studied in neurons, evidence is 
emerging that cellular senescence can be associated with 
terminally differentiated cells133,134. Markers of DDR 
signalling, heterochromatin induction and activation 
of SASP, including the secretion of IL-6 and accumu-
lation of SA-β-gal, were all detected in different types 
of neurons in ageing mice, and a short period of die-
tary restriction prevented their accumulation134. Such 
phenotypes were exacerbated in telomerase-inactivated 
mice, while p21 loss reduced many of these markers. 
Conversely, obesity in mice was associated with the 
expression of senescence markers in neurons of specific 
parts of the brain135. In a mouse model of Alzheimer dis-
ease, transcriptomic analyses of tau-containing neurons 
indicated an expression profile consistent with cellular 
senescence136. Neurons in the retina, known as retinal 
ganglion cells, were found to accumulate markers of 
DDR activation, SA-β-gal and both p16 and p21, in 
retinopathies137.

Mature postmitotic adipocytes show strong SA-β-gal 
staining and SASP induction in a p53-dependent 
manner in mice subjected to excessive caloric intake, 
although other markers, such as accumulation of DNA 
damage, were not reported138. Osteocytes are postmitotic 
differentiated cells controlling bone homeostasis. In old 
mice, osteocytes show markers of telomeric dysfunction 
and accumulate p16. SASP activation in osteocytes was 
shown to promote osteoclast activity, thus impairing 
bone strength. In this context, senolytic drugs reduced 
bone loss139.

Furthermore, persistent telomeric DNA damage in 
cardiomyocytes drives a senescence phenotype charac-
terized by induction of p16 and p21 and a non-canonical 
SASP programme that contributes to cardiac hypertro-
phy and fibrosis140. Indeed, genetic and pharmacological 
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clearance of p16-expressing senescent cells ameliorated 
heart functions in aged mice140. The most informative 
approach to determine the contribution of senescent 
cells to a condition is their genetic or pharmacolog-
ical removal. However, as there are currently no tools 
to selectively target this subset of differentiated senes-
cent cells, their role in ageing-related processes 
remains unclear.

Beneficial effects of cellular senescence
Senescence can be regarded as a stress response that 
evolved to perform essential and beneficial functions141 
(Fig. 3). The beneficial roles of senescent cells are evi-
dent in embryonic development. A distinct form of 
cellular senescence occurs in the mammalian develop-
ing embryo and in the placenta to control growth and 
patterning131,132,142,143. Similarly, in amphibians, cellular 
senescence occurs at specific steps during development 
to shape body growth144. Therefore, the cellular senes-
cence early in life is important for normal development 
and morphogenesis, and later in life it becomes impor-
tant for tissue repair and inhibition of cancer outgrowth. 
While tumour suppression activity is mediated mainly 
by cell-autonomous cell cycle arrest, most other senes-
cence functions involve the SASP. Over time, although 
SASP favours proper tissue development, tissue repair 
and recruitment of immune cells, its persistence may 
generate chronic inflammation and contribute to 
ageing-related diseases and, paradoxically, cancer.

Cellular senescence contributes to the maintenance 
of the structure and the function of tissues following 
injury. For example, in liver fibrosis, a condition associ-
ated with scarring of the liver and decrease in its func-
tion, senescence limits the proliferation and expansion 
of ECM-producing activated hepatic stellate cells145,146. 
This response limits the progression of the pathology 
following liver damage. SASP from these cells attracts 
natural killer (NK) cells that eliminate senescent cells 
from the liver to restore liver homeostasis145. Cellular 
communication network factor 1 (CCN1; also known 
as CYR61), an ECM protein that mediates the induction 
of cellular senescence in the liver, promotes senescence 
in fibroblasts during cutaneous wound healing, thus lim-
iting skin fibrosis147. During wound healing, the SASP 
component PDGF-AA accelerates wound closure12. 
Moreover, induction of a senescence programme limits 
fibrosis progression in the pancreas148.

Cellular senescence is involved in tissue repair in 
other systems. In zebrafish, senescence impairment 
prevents fin regeneration following amputation149, and 
in salamanders, senescent cells have been associated 
with limb regeneration150. Altogether, these observations 
suggest that cellular senescence is a programme that has 
evolved to limit tissue damage response in the organism 
and facilitate tissue repair and remodelling to promptly 
restore the tissue to a functional state.

The homeostatic function of senescent cells is 
dependent on their elimination by the immune system, 
once their beneficial functions have been performed145,151. 
Specialized SASP chemokines are able to attract dis-
tinct subsets of immune cells, including NK cells, 
neutrophils, dendritic cells, monocytes/macrophages,  

B cells and T cells75,151,152. Among these cell types, NK 
cells, T cells and macrophages can physically interact 
with senescent cells in pathological and physiological 
conditions131,132,145,150,153–156. This response is mediated by 
SASP components and by the direct interaction between 
immune cells and senescent cells153,156–158. The surveillance 
and clearance of senescent cells by the immune system is 
necessary in order to limit tumorigenesis in premalignant 
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Fig. 3 | Biological consequences of cell senescence. 
Senescent cells execute distinct biological functions, 
which can have deleterious or beneficial consequences 
in a context-dependent manner. As beneficial functions, 
senescent cells guide tissue regeneration and embryonic 
development in the embryo in transient structures by 
secretion of FGF4 and FGF8 and shape the placenta 
structure and function with matrix metalloproteinase 2 
and 9 (MMP2 and MMP9). Senescent cells also limit tissue 
damage by limiting excessive proliferation of cells and 
promote wound healing in part by secretion of PDGF-AA. 
One of the most prominent functions of senescence is 
tumour suppression. Senescent cells limit tumour 
development by cell-autonomous block of cell cycle 
progression via upregulation of p53, p16 and p21 and in a 
cell-non-autonomous manner by promoting senescence in 
neighbouring cells through secretion of interleukin-6 (IL-6) 
and IL-8. As deleterious functions, senescent cells can 
promote a proinflammatory microenvironment and 
therefore support tumour development in their proximity 
through multiple senescence-associated secretory 
phenotype (SASP) components. Similarly, senescent cells 
promote sterile chronic inflammation during ageing and 
during multiple age-related diseases. SASP factors, 
including IL-6, IL-1 receptor antagonist (IL-1RA), GROα 
and interferon-γ (IFNγ), are the main mediators of this effect. 
Additional SASP factors, including MMPs, might further 
damage tissue architecture and promote inflammation 
and tumorigenesis. When stem or progenitor cells enter 
senescence due to upregulation of the cell cycle inhibitory 
proteins, such as p16 and p21, they can no longer perform 
their function in supporting tissues by providing new cells, 
thus limiting tissue regenerative potential. Senescent 
cells also promote reprograming to an embryonic state, 
at least partially through IL-6. The reprograming, on one 
hand, can support tissue regeneration and, on the other hand, 
favours tumour development.
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lesions and following cancer therapy155,156,159. Senescence 
immunosurveillance is also essential to limit pathological 
fibrotic conditions and ageing20,145,151,157. By contrast, dur-
ing cancer development associated with accumulation of 
senescent cells, SASP can recruit immature myeloid cells 
to promote tumorigenesis in a paracrine manner160,161. In 
addition, through SASP, senescent cells contribute to can-
cer development162,163 and metastasis164, treatment failure 
and increased risk of recurrence165. Thus, SASP is a com-
ponent of the senescence phenotype that seems to have 
evolved to signal the presence of senescent cells to the 
immune system and promote their elimination, but when 
senescent cells persist, their SASP becomes detrimental.

Detrimental impacts of senescence
Senescent cells can contribute to organismal ageing 
through multiple mechanisms (Fig. 3). With advancing 
age, individuals tend to develop a proinflammatory 
condition, characterized by high circulating levels of 
inflammatory molecules, known as inflammageing166. 
Inflammageing is a risk factor for various chronic 
age-associated diseases, including cardiovascular dis-
eases, some cancer types and neurodegeneration, and 
can be associated with premature death. Furthermore, 
the presence of inflammatory molecules in the blood 
of elderly individuals is associated with weight loss, 
muscle loss and weakness, chronic inflammation and 
depression — manifestations of a condition recently 
recognized as frailty. A molecular link between cellu-
lar senescence, inflammageing and frailty was unveiled 
during the identification of common genomic variations 
that contribute to chronic phenotypes associated with 
ageing. Genome-wide association studies have recently 
revealed that the INK4/ARF gene locus, encoding 
p15INK4B, p16 and ARF, key effectors of the senescence 
growth arrest, is a genomic hotspot for susceptibility to 
several ageing-associated diseases, including cancer, dia-
betes and cardiovascular disease167,168, and physical dys-
function in people with advancing age169,170. Moreover, 
shortened telomere length, observed during ageing, 
correlates with metabolic and cardiac dysfunctions171,172. 
The SASP may contribute to dysfunction of multiple 
aged organs. Indeed, increased blood levels of IL-6, IL-1 
receptor antagonist (IL-1RA) and tumour necrosis factor 
(TNF) receptor, all key SASP effectors, can be predic-
tors of chronic disease in old individuals173. That cellular 
senescence is causative for frailty and age-associated dis-
eases was demonstrated by transplantation of relatively 
few senescent cells and observation of tissue dysfunction 
and shortened lifespan in mice174.

Recently, atherosclerotic plaques from LDL receptor- 
null mice were found to accumulate high amounts of 
SA-β-Gal and p16-positive endothelial cells, vascular 
smooth muscle cells and macrophages. Removal of 
p16-positive cells in both p16-3MR and INK-ATTAC 
transgenic mice by both genetic methods and senolyt-
ics reduced plaque formation and progression, while 
dampening the SASP175. Consistent with these data 
in mice, human atherosclerotic plaques are highly 
enriched in p16-positive cells, although p16 seems to 
be expressed mainly by inflammatory macrophages176, 
and it cannot be ruled out that the positive effects of 

senolysis in atherosclerosis-prone mice175 are the con-
sequence of elimination of inflammatory macrophages. 
Macrophages with senescence-like features have also 
been identified in lesions from patients with cell his-
tiocytoses, haematological neoplasms associated with 
oncogene activation characterized by multiorgan dis-
semination of highly inflamed, p16-positive myeloid 
cells177,178.

In addition to the contribution of SASP to inflamma-
tion and chronic diseases at the organismal level, senes-
cent cells might affect tissue regeneration by limiting the 
proliferative potential of stem and progenitor cells, as 
discussed earlier. Muscle progenitor cells that accumu-
late damage, both DNA and molecular, and upregulate 
p16 enter senescence on stimulation and are unable to 
contribute to muscle regeneration after injury179. From 
the findings taken together, senescence limits prolifer-
ation of stem and progenitor cells in a cell-autonomous 
manner. In addition, it was recently reported that the 
clonogenic properties of HSCs are impaired when they 
are exposed to SASP factors derived from senescent stro-
mal cells180, suggesting that senescence may also affect 
regeneration in a paracrine fashion.

While the detrimental effects of senescence on adult 
somatic stem cell functions are well established, cel-
lular senescence is more ambiguous in the context of 
somatic cell reprograming to an embryonic-like state. 
In vitro studies demonstrated that cellular senescence 
is a potent cell-autonomous barrier for transcription 
factor-mediated reprograming using OCT4, SOX2, 
KLF4 and MYC (commonly referred to as OSKM), in a 
manner similar to its role in tumour suppression181–183. 
However, expression of these factors in vivo induces 
senescence and SASP production, which promotes 
paracrine senescence as well as reprogramming 
in non-senescent cells in a cell-non-autonomous 
manner184. In these same models, exogenous tissue dam-
age that drives cellular senescence facilitates reprogram-
ming. Senescence induction is necessary for efficient 
cell reprograming, as SASP factor production promotes 
reprogramming into induced pluripotent stem cells in a 
paracrine manner184. IL-6 produced in the SASP appears 
to be crucial for the generation of induced pluripotent 
stem cells in this context.

The non-cell-autonomous effects of cellular senes-
cence can differ depending on the context. In vitro, the 
SASP factors IL-8, GROα, IL-6, and IGFBP7 reinforce 
the senescent phenotype in an autocrine manner74,93,185. 
In addition, specific SASP components, either soluble 
or in extracellular vesicles186, can induce senescence in a 
paracrine manner — which includes DDR activation73,83. 
These effects could potentially contribute to the spread 
of senescence in tissues and lead to tissue and organ-
ismal dysfunction. In vivo, SASP consequences are 
more complicated. For example, the SASP component 
interferon-γ induces cellular senescence and tissue age-
ing in mice with shortened telomeres, and abrogation 
of interferon-γ signalling rescues ageing-related phe-
notypes and extends lifespan187. Similarly, transform-
ing growth factor-β improves liver regeneration on 
injury by blocking paracrine senescence in neighbour-
ing uninjured hepatocytes188. By contrast, short-term 
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exposure to the SASP promoted expression of stem 
cell markers and increased the regenerative capacity of 
mouse keratinocytes189 and of skeletal muscle190 in vivo. 
However, prolonged exposure to the SASP resulted in 
paracrine-induced senescence, indicating that, at least 
in vivo, the effects are dependent on the composition 
and length of exposure to the SASP. From an evolution-
ary perspective, SASP may in the short-term facilitate 
wound healing and tissue damage repair by enhancing 
stem cell function, whereas the long-term presence of 
senescent cells may not be selected for and contributes 
to SASP deleterious effects.

Senescence as a driver of ageing
The rapidly ageing BubR1 hypomorphic mouse model 
has been valuable to demonstrate that cellular senes-
cent cells cause ageing and disease191,192. BubR1 is part 
of the mitotic checkpoint machinery that ensures 
proper segregation of duplicated chromosomes into two 
identical daughter cells during mitosis. Mice express-
ing ~10% of normal BubR1 levels develop a variety 
of progeroid features, including shortened lifespan, 
cataracts, lordokyphosis, lipodystrophy and infertility very 
early in life191. Adipose tissue, skeletal muscle and the 
eyes of BubR1 hypomorphic mice express high levels 
of p16 and other senescence-associated features192. In 
an attempt to prevent the accumulation of these cells, 
BubR1-mutant mice were bred to Cdkn2ap16-knockout 
mice. In the absence of p16, the age-related deterio-
ration of adipose tissue, skeletal muscle and eye was 
attenuated193. Importantly, genetically preventing the 
accumulation of p19ARF, a tumour suppressor that modu-
lates the stability of p53 by influencing MDM2-mediated 
destruction, did not result in similar prevention193, 
indicating that p16 was critical for these disorders.

On the basis of these observations, two different 
transgenic mouse models, INK-ATTAC11 and p16-
3MR12, have been generated to critically test whether 
removal of senescent cells impacts ageing and dis-
eases associated with senescent cell accumulation. 
Importantly, treatment of BubR1 hypomorphic mice 
harbouring the INK-ATTAC transgene to remove 
p16-expressing cells beginning at weaning age attenu-
ated the accumulation of senescent cells and premature 
ageing in skeletal muscle, eye and adipose tissue11. A sec-
ond study using the INK-ATTAC system in naturally 
aged mice corroborated these findings194 and increased 
median lifespan of both male and female mice in dif-
ferent genetic backgrounds and increased healthspan, 
as indicated by reduced kidney scarring, cardiomyocyte 
hypertrophy, cardiac stress intolerance, cataractogenesis 
and lipodystrophy194.

The p16-3MR mouse model expresses a trimodality 
reporter fusion protein consisting of synthetic Renilla 
luciferase, monomeric red fluorescent protein and a 
truncated herpes simplex virus thymidine kinase under 
the control of an artificial promoter for p16 (ref.12). In 
this model, cells that express p16 become sensitive to 
elimination by ganciclovir, a nucleoside analogue that is 
converted into a toxic DNA chain terminator by herpes 
simplex virus thymidine kinase and causes cell death195. 
These two mouse models have greatly accelerated our 

understanding of whether senescent cells contribute 
to ageing and age-related diseases, at least in model 
organisms, for numerous diseases, including Parkinson 
disease196, Alzheimer disease197,198, atherosclerosis175, 
idiopathic pulmonary fibrosis199, chronic obstructive 
pulmonary disease200 and osteoarthritis201. It remains 
unclear whether the elimination of senescent cells them-
selves or their SASP is the key element underlying these 
improvements.

Exploiting senescence for therapeutics
The literature is becoming inundated with evidence that 
senescent cells accumulate in a variety of age-associated 
diseases13. With the observation that elimination of 
senescent cells is largely beneficial and seems to lack 
long-term negative consequences, researchers in aca-
demia and industry have aimed to identify novel agents 
and strategies to eliminate senescent cells or their effects 
in the absence of genetical engineering to be applicable 
for use in humans. These ‘senotherapeutic’ strategies 
can be broadly categorized into two categories: phar-
macological agents termed ‘senolytics’, which eliminate 
senescent cells, and senomorphics, which prevent the 
detrimental cell-extrinsic effects of senescent cells and 
include SASP inhibitors.

Senolytics. Various senolysis strategies have been devel-
oped recently using a combination of in vitro models of 
senescence and in vivo animal models (Fig. 4; Table 1). 
Senescent cells frequently upregulate negative modu-
lators of apoptosis, including members of the BCL-2 
family (including BCL-2, BCL-W and BCL-XL), which 
confers resistance to apoptosis-inducing signals14,15. The 
senolytic agents ABT-737 and ABT-263 (also known 
as navitoclax) inhibit the activity of the BCL-2 family 
members, thereby permitting senescent cells to initiate 
apoptosis. Additionally, A-1331852 and A-1155463, 
which are thought to inhibit BCL-XL, have also been 
shown to exhibit senolytic activity202. Recently, the car-
diac glycoside ouabain demonstrated senolytic activ-
ity, at least in part, through the induction of NOXA, 
a proapoptotic BCL-2 family protein203,204. Promoting 
proteasomal degradation of BCL-2 through EF24 treat-
ment also results in the selective killing of senescent 
cells205. Administration of proxofim (a peptide) pro-
motes senolysis by interfering with the binding of p53 
to forkhead box protein O4 (FOXO4)206. In senescent 
cells, FOXO4 binds to p53 to localize it to the nucleus. 
If this interaction is disrupted by the administration of 
an inverse peptide, p53 is excluded from the nucleus, 
initiating cytochrome c release from the mitochondria 
and apoptosis206. The use of various natural flavonoids, 
including quercetin and fisetin, either alone or in com-
bination with dasatinib, a pan-tyrosine kinase inhibitor, 
can stimulate senolysis in a variety of contexts in vitro 
and in vivo199,207–210. In agreement with studies performed 
on INK-ATTAC naturally aged mice194, treatment of 
advanced-age mice with a combination of dasatinib and 
quercetin improved physical function and increased 
lifespan174. Importantly, the administration of dasatinib 
and quercetin has shown effectiveness in reducing the 
expression of p16 and SA-β-gal in a phase I clinical trial 

Cataracts
Clouding of the lens in the  
eye leading to inability  
to have clear vision. Surgical 
intervention to replace 
diseased lenses is a common 
medical procedure in aged 
humans.

Lordokyphosis
Abnormal rearward  
curvature of the spine, 
observed both in laboratory 
mice and in humans.

Lipodystrophy
Abnormal distribution of 
adipose tissue in the body,  
can refer to both excessive or 
insufficient deposition.
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among patients with diabetic kidney disease211 and idi-
opathic pulmonary disease212. Other senolytics, includ-
ing HSP90 inhibitors213,214 and piperlongumine215,216, have 
also been demonstrated to be selective towards senescent 
cells. More recently, clinically approved antibiotics have 
been reported to have senolytic activity towards DNA- 
damage induced senescent cells through metabolic 
changes217. Collectively, these strategies target a broad 
spectrum of cellular pathways, indicating that senescent 
cells can be removed via multiple avenues.

A novel strategy to induce senolysis exploits the 
observed increased level of SA-β-gal activity. Nano
particles containing either fluorophores or cytotoxic 
agents coated with galacto-oligosaccharides were found 
to preferentially deliver cytotoxic cargo to senescent cells 
because of the higher level of SA-β-gal activity in these 
cells218. Additionally, recent studies have further shown 
the potential of delivering cytotoxic factors to lysosomes 
of senescent cells by galactose-modifying prodrugs or 
cytotoxic agents219,220.

In support of senolytic therapies being potentially 
beneficial is the notion that organisms have an intrin-
sic senolytic system: immunosurveillance against 
senescent cells. Senescent cells are indeed subjected 
to immunosurveillance by multiple components of 
innate and adaptive immunity, including NK cells, 
T cells and macrophages145,151,153–156. Therefore, it is 
conceivable to harness the mechanisms of immuno-
surveillance of senescent cells, and all mechanisms 
that the immune system uses to target other threats, to 

eliminate senescent cells. Several such approaches were 
recently implemented (reviewed in221). It is possible that 
senescent cells accumulate in aged and diseased tissues 
owing to a decline in immunosurveillance. Therefore, 
restoring or boosting the ability of the immune system 
to specifically eliminate senescent cells could result in 
their successful clearance from tissues. Such an approach 
is based on our understanding of the mechanisms of 
immunosurveillance of senescent cells, in particular 
the interaction between NK and senescent cells151,157,158. 
NK cells use perforin-mediated granule exocytosis and 
not death receptor ligands, which induce cell death by 
binding to these receptors, to target senescent cells151. 
This mechanism is favoured because decoy receptor 2 
(DCR2) is strongly expressed in senescent cells. DCR2 
prevents targeting via the death receptors (DR4 and 
DR5) by the variety of cytotoxic cells that express their 
ligand TRAIL151. Therefore, blocking such an inhibitory 
mechanism can lead to removal of the inhibitory effect 
and increased targeting of senescent cells by endogenous 
naturally occurring mechanisms.

An alternative approach to enhance the immune 
clearance of senescent cells is by enhancing the activity 
and increasing the accumulation of immune cells that are 
responsible for senescent cell surveillance. Stimulation  
of innate immune response with poly(I:C), a simulator of  
viral infection, improves senescent cell clearance145. 
Although treatment with similar agents can hardly be 
considered in humans due to possible side effects, the 
subtler stimulation of the immune system with specific 
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HSP90
A molecular chaperone that 
promotes proper protein 
folding and degradation,  
which also contributes to  
heat stress resilience.

Prodrugs
Compounds that are 
metabolized into an active  
drug to modify drug 
bioavailability and activity.

Perforin
A pore forming protein 
expressed in cytotoxic  
T cells and natural killer cells. 
When these cells execute 
cytotoxicity, they secrete 
granules containing perforin, 
which binds to the target cell’s 
membrane and forms pores on 
the target cell in order to allow 
cytotoxicity.
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Table 1 | Senolytic and senomorphic compounds

Compound Targets Clinical trial status Refs

Senolytic

Dasatinib Pan-receptor tyrosine 
kinases (including ephrin B1)

Phase II, (NCT02848131) for chronic kidney disease, 
phase II (NCT04313634) for skeletal health, phase I/II 
(NCT04063124) for Alzheimer disease

210

Quercetin Numerous (including PI3K) Phase II NCT02848131) for chronic kidney disease, 
phase II (NCT04313634) for skeletal health, phase I/II 
(NCT04063124) for Alzheimer disease

210

Fisetin PI3K/AKT/mTOR Pphase I/II (NCT04210986) for osteoarthritis of the 
knee, phase II (NCT04313634) for skeletal health

202

ABT-737 BCL-2, BCL-XL and BCL-W 
(prosurvival proteins)

Preclinical animal models 14

ABT-263 (navitoclax) BCL-2, BCL-XL and BCL-W 
(prosurvival proteins)

Phase I/II (NCT00445198), phase II (NCT02591095), 
phase I (NCT02520778), phase II (NCT02079740) for 
various cancers

15,165,175, 

197,228

A-1331852 BCL-XL (prosurvival 
protein)

Preclinical models of senescence in vitro 202

A-1155463 BCL-XL (prosurvival 
protein)

Preclinical models of senescence in vitro 202

EF24 Proteosomal degradation 
of BCL-2 family proteins 
(prosurvival proteins)

Preclinical models of senescence in vitro 205

Cardiac glycosides 
(including oubain and 
digoxin)

BCL-2, BCL-XL and BCL-W 
(prosurvival proteins)

Preclinical animal models 203,204

Azithromycin Autophagy, metabolic 
changes

Preclinical models of senescence in vitro 217

Roxithromycin Autophagy, metabolic 
changes

Preclinical models of senescence in vitro 217

Proxifim p53 Preclinical animal models 206

UBX0101 MDM2 and p32 Phase II (NCT04129944) for osteoarthritis of the 
knee

201

Panobinostat HDAC Approved for multiple myeloma 55

Geldanamycin HSP90 Preclinical models of senescence in vitro 214

Tanespimycin HSP90 Preclinical models of senescence in vitro 214

Alevspimycin 
(17-DMAG)

HSP90 Preclinical models of senescence in vitro 214

Piperlongumine (and 
analogues)

OXR1 (unknown) Preclinical models of senescence in vitro 215,216

Galactose-conjugated 
nanoparticles

Lysosomal activity of 
senescent cells

Preclinical animal models 218

Galactose-modified 
cytotoxic agents

Lysosomal activity of 
senescent cells

Preclinical animal models 219,220

BET protein degrader Bromodomain and 
extraterminal domain 
family protein

Preclinical animal models 104

Senomorphic

Metformin IKK and/or NF-κB Approved for type 2 diabetes 137,235–237

Apigenin NF-κB p65 subunit and IκB Naturally occurring flavonoid 238

Kaempferol NF-κB p65 subunit and IκB Naturally occurring flavonoid 238

BAY 11-7082 NF-κB p65 subunit and IκB Preclinical models of senescence in vitro 118

Rapamycin mTOR Approved for immunosuppression 230,231, 

233,234

RAD001 mTOR Approved for tuberous sclerosis 
complex-associated diseases

232

SB203580 p38 MAPK Preclinical models of senescence in vitro 88

(5Z)-7-Oxozeaenol TAK1 Preclinical models of senescence in vitro 232

Ruxolitinib JAK Approved for graft-versus-host disease 99
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cytokines that boost NK cells could be a plausible 
approach. The cytokines IL-21 and IL-15 have been sug-
gested to substantially boost NK cell-mediated immu-
nity against cancer cells222–225. However, the effect of these 
cytokines on immunosurveillance of senescent cells has 
not been elucidated and their efficacy as senolytics in 
disease models needs to be tested.

While boosting natural immune mechanisms of 
senescent cell surveillance may have therapeutic poten-
tial in years to come, it is worth considering the rapidly 
growing variety of tools that are becoming available in 
the immuno-oncology field. Directed cellular approaches 
such as use of chimeric antigen receptor T (CAR T) cells and 
NK cells, as well as blocking of immunoinhibitory inter-
actions by blocking interactions with PD1, cytotoxic T 
lymphocyte-associated protein 4 (CTLA4) and other 
inhibitory molecules might provide powerful strategies 
for increasing immunosurveillance. Such approaches 
depend on the recognition of specific markers on the 
cell surface of senescent cells. Exciting recent work has 
demonstrated that senolytic CAR T cell therapy can 
attenuate senescence-associated diseases226. Several 
studies used unbiased approaches to identify such 
markers227–229. However, the overlap between the extracel-
lular markers identified by the aforementioned strategies 
is low, when each experiment identified distinct markers, 
suggesting that such markers might be specific to the cell 
of origin and/or to the mechanism of senescence induc-
tion. One possible way to address this problem is to use 
the surface molecules on senescent cells that signal to NK 
cells for their elimination, namely the NKG2D receptor 
ligands157. However, the large repertoire of such ligands, 
including MICA, MICB and ULBP1–ULBP6, and the 
different levels of their expression on senescent cells 
of different origins157 might provide a challenge in using 

them for enhancing immune clearance of senescent cells. 
When different markers are present on cells of different 
origins, it is possible to envision multiple approaches 
specific to distinct pathological conditions.

Senomorphics. An alternative to the complete elimina-
tion of senescent cells through senolysis is the use of 
senomorphic agents. The principle of senomorphics is 
to disrupt key attributes of senescence, primarily SASP 
production and secretion, while keeping the cells alive, or 
to modify their ability to maintain a stable growth arrest 
(Fig. 5). This approach could interfere with the proinflam-
matory nature of senescent cells and potentially delay key 
aspects of ageing and ageing-associated disease.

Novel mechanisms to regulate the SASP, in addition 
to the transcriptional modulation of SASP factor expres-
sion, have been uncovered by using hypothesis-driven 
strategies and elegant genetic and drug screenings. These 
include, for example, the mammalian target of rapamy-
cin (mTOR) pathway, which coordinates cell growth 
and metabolism in response to nutrients, and also pro-
motes SASP production through increased translation 
of subsets of mRNAs, including the membrane-bound 
and upstream regulator of NF-κB, IL-1α230, and the 
serine/threonine kinase MK2, which indirectly sta-
bilizes many cytokine-encoding transcripts231. These 
mechanistic insights provided a molecular foundation 
for the use of the mTOR inhibitor rapamycin in patho-
logical settings associated with senescence in vivo. 
Treatment with rapamycin (and its analogue RAD001)232 
attenuated the protumorigenic SASP230, prevented 
senescence233, impaired SASP-mediated immune rec-
ognition of oncogene-expressing cells and ameliorated 
liver dysfunction in naturally aged mice231. Of note, it 
cannot be excluded that rapamycin may act also via 

Compound Targets Clinical trial status Refs

Senomorphic (cont.)

KU-60019 ATM Preclinical animal models 274

NDGA HSP90 Naturally occurring antioxidant 249

Loperamide HSP90 Approved for treatment of diarrhoea 214

Simvastatin IL-6, IL-8, MCP1 Preclinical models of senescence in vitro 240

Cortisol IL-6 secretion Steroid hormone 241

Anakinra IL-1R Approved for rheumatoid arthritis 242

Canakinumab IL-1β Approved for cryopyrin-associated periodic 
syndromes

243

Rilonacept IL-1α and IL-1β Approved for cryopyrin-associated periodic 
syndromes

244

Etanercept TNF Approved for autoimmune diseases 245

Infliximab TNF Approved for autoimmune diseases 246

Tocilizumab IL-6R Approved for autoimmune diseases 247

Siltuximab IL-6 Approved for multicentric Castleman disease 248

Telomeric antisense 
oligonucleotides

Telomeric non-coding RNA 
fuelling DDR

Preclinical animal models 251

ATM, ataxia telangiectasia mutated; DDR, DNA damage response; HDAC histone deacetylase; IL, interleukin; IL-1R, interleukin-1 
receptor; IL-6R, interleukin-6 receptor; IκB, inhibitor of nuclear factor-κB; IKK, inhibitor of nuclear factor-κB kinase;  
JAK, Janus kinase; MCP1, monocyte chemoattractant protein 1; mTOR, mammalian target of rapamycin; nuclear factor-κB; NF-κB;  
NGDA, nordihydroguaiaretic acid; TNF, tumour necrosis factor.

Chimeric antigen receptor 
T (CAR T) cells
T cells that have been 
genetically engineered to 
express T cell receptor 
developed to bind a defined 
target in order to eliminate 
the cells that have the target 
on their membrane.

PD1
A protein expressed on 
the cell surface that inhibits 
the ability of the immune 
system to target the cells 
that express the protein. 
Inhibition of interaction of 
PD1 with its ligand is a potent 
immunotherapy approach.

Table 1 (cont.) | Senolytic and senomorphic compounds
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senescence-independent mechanisms. Additionally, 
rapamycin treatment increased lifespan and delayed 
certain ageing-related dysfunctions in mice234.

Compounds that modulate NF-κB signalling, 
including metformin137,235–237, apigenin238, kaempferol238 
and BAY 11-7082 (ref.118), have also been shown to 
decrease SASP production. NAD+/NADH metabolism 
was identified as a critical regulator of the magnitude 
of proinflammatory SASP associated with oncogene 
activation, and this regulation can be independent 
of senescence-induced growth arrest239. A number of 
neutralizing antibodies directed against key compo-
nents of the SASP or their receptors, including IL-6, 
IL-1α, IL-1β and TNF, also have shown senomor-
phic properties104,240–248 (Table 1). Additionally, SASP 
establishment and the secretion of SASP factors can be 
modulated by inhibiting HSP90 (refs214,249).

Finally, as in many instances cellular senescence is the 
consequence of the activation of DDR pathways by dys-
functional telomeres, the inhibition of telomeric DDR 
may prevent or reduce senescence establishment and 
maintenance. Recently, sequence-specific inhibition of 
DDR activation by antisense oligonucleotides (ASOs)250 
and their use in cultured cells and in mouse models to 
specifically inhibit telomeric DDR38 provided support 
for this approach. The use of telomeric ASOs in a mouse 
model of Hutchinson–Gilford progeria syndrome (an 
accelerated ageing syndrome) effectively reduced DDR 
activation, the levels of senescence markers and SASP 
induction, improved tissue homeostasis and extended 

lifespan251. This or similar approaches that do not dep-
auperate stem or progenitor cell reservoirs but rather 
promote cell proliferation may provide an alternative or 
complementary approach to senolysis.

Senolytics may have benefits compared with seno-
morphics. Firstly, removal of senescent cells has the 
advantage of their being targeted intermittently and not 
requiring continuous administration of SASP inhibitors, 
although repeated treatments are probably necessary. 
Furthermore, the removal of senescent cells eliminates 
the possibility of senescence bypassing mutations that 
can promote tumorigenesis in these damaged cells. 
Additionally, although there is a strong correlation 
between the SASP and ageing-associated tissue and 
organ dysfunction, there is no direct demonstration 
that the SASP drives these ageing-related defects, as it 
has not been possible to separate the SASP from senoly-
sis using transgenic mouse models. However, although 
INK-ATTAC transgenic mouse models in which senes-
cent cells are removed exhibit no apparent detrimental 
side effects, it remains to be determined whether pro-
longed or repeated senolysis could become eventually 
toxic to an organism. Furthermore, it is not known 
whether senolysis is detrimental or beneficial when the 
senolysis is induced in advanced age, when the organ-
ism has a high senescent cell burden. Pharmacological 
clearance of a subpopulation of p16/SA-β-gal-positive 
macrophages has been proposed to contribute to 
the beneficial effects of senolysis252,253, but the extent 
to which this cell type contributes to age-related 
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dysfunctions needs to be further investigated. Lastly, 
emerging evidence suggests that targeted senolysis in 
mice may be profoundly toxic in the liver and perivas-
cular tissue, because of the eradication of p16-expressing 
endothelial cells, adipocytes and macrophages in aged 
organs, which all have structural functions254.

Interplay between ‘rejuvenating’ treatments and cellular 
senescence. Caloric restriction has been demonstrated 
to be the most effective strategy to lengthen healthspan 
and lifespan, and is efficacious in a range of species from 
yeast to primates255. Whether it impacts the number or 
activity of senescent cells has been surprisingly under-
studied. Nevertheless, it was reported that caloric restric-
tion reduces p16 levels and the transcriptional expression 
of genes associated with cellular senescence, including 
SASP genes, in mice and in the colon of healthy human 
individuals256,257. Caloric restriction in mice reduced the 
DDR and improved telomere maintenance258. Caloric 
restriction has also been found to reduce the levels 
of DDR markers and SASP regulators in postmitotic 
neurons134. The link between caloric restriction and 
reduced DDR signalling and reduced senescence burden 
may be related to the observation in culture that serum 
boosts DDR signalling in senescent cells259.

Inhibiting telomere shortening to prevent and 
reduce cellular senescence in the context of ageing 
and so-called telomere syndromes is being considered 
as a therapeutic approach260. In addition to potentially 
using telomeric ASOs to modulate DDR activation and 
its consequences251, other options are being explored, 
such as the reactivation of an endogenous telomerase 
gene using a natural compound261, but with limited effi-
cacy, and by sex hormones262, which however has some 
significant clinical drawbacks. Viral delivery of the 
telomerase-encoding gene (Tert) has been tested with 
more success in several settings. Systemic delivery of Tert 
reduces several senescence markers and ageing-related 
conditions and extends the lifespan of wild-type mice, 
thus demonstrating that telomeric DDR activation plays 
a role in natural ageing263. Idiopathic pulmonary fibro-
sis is associated with telomere shortening and markers 
of cellular senescence in humans264. In mouse models 
recapitulating these features, adeno-associated virus 
particles delivering Tert have been shown to reduce 
DDR and the level of senescence markers and improve 
lung function265. Importantly, concerns regarding the 
safety of telomerase forced expression in damaged 
tissues, in particular by fuelling cancer progression, 
have been mitigated by the recent demonstration that 
oncogene-expressing mice do not show accelerated 
tumorigenesis on such treatment266.

Over the past few decades, heterochronic parabio-
sis, a process by which young and old small animals are 
surgically connected by establishing a joined circulation, 
identified systemic factors that are present in young 
blood and can ameliorate the function of several aged 
organs, including liver, muscle, heart and brain267. In the 
brain, similar rejuvenating effects were observed by a 
simpler procedure of young human plasma transferred 
into old animals268. Exposure to a younger systemic envi-
ronment was also shown to relieve age-associated tissue 

dysfunctions in ageing telomerase-deficient mice269. 
Recently, it was reported that blood exchange between 
young and old mice led to a significant reduction in cel-
lular senescence and SASP marker expression in mul-
tiple aged tissues, while at the same time the levels of 
senescence markers were increased in the young animals 
exposed to old blood270. These observations indicated 
that systemic factors reverse some features associated 
with ageing, including defective stem and progenitor 
cell function, chronic inflammation and senescence 
burden, and support the hypothesis that intermittent 
blood exchange in humans may be used as a therapeu-
tic modality for age-related diseases. In line with this, 
therapeutic plasma exchange is currently being tested in 
patients with acute sepsis271 or liver damage272.

Challenges and future directions
As our understanding of senescent cell characteristics 
in vitro and in vivo continues to increase, many chal-
lenges remain. For example, it is unclear how many 
‘senescent phenotypes’ exist. It is possible that there is a 
very high degree of heterogeneity in the senescent state, 
at the single-cell level, as well as between cell types and 
depending on the stimuli that induce senescence. The 
emerging notion that cellular senescence is a dynamic 
process that evolves over time further augments its com-
plexity. The identification of a truly universal marker of 
senescence would be a boon to isolate and characterize 
senescent cells. The identification of more specific mark-
ers to distinguish unequivocally different types of senes-
cent cells would be most useful to characterize them and 
shed light on their origin in vivo. Presently, single-cell 
transcriptomic approaches, including spatial transcrip-
tomics, are the only option to fully appreciate senescent 
cell complexity and to determine the similarities and 
differences between regulated processes such as cell dif-
ferentiation and senescence and the impact that senes-
cence has on already differentiated, non-proliferating, 
cells. Distinguishing between senescent cell subtypes 
and identifying what triggers senescence for each sub-
type would enable us to identify the particular subsets 
of senescent cells that may be most deleterious to tissue 
function, and their targeting would optimize the ben-
efits of senolytic and senomorphic approaches, while 
minimizing deleterious effects.

The physiological triggers of senescence in vivo are 
poorly understood. Telomere dysfunction is probably an 
important one, and only the use of specific telomeric DDR 
inhibitors will prove its involvement in various physio-
pathological conditions. Telomeric ASOs could be both a 
research tool and a potential treatment, selective for those 
forms of cellular senescence caused by telomere damage.

The triggers for senescence in seemingly DDR- 
independent conditions remain elusive. SASP is emerg-
ing as the most consequential of all senescent cell pheno-
types. Yet, the appreciation of the complexity underlying 
the mechanisms that control the SASP evolves as more 
components of the SASP are identified, in different cell 
types and in different contexts. Also to be considered is 
the powerful paracrine impact of cellular senescence on 
non-senescent cells; controlling it will clarify its expected 
but undemonstrated role in organismal ageing and in 
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a number of conditions associated with the spread of 
cellular senescence.

Much of our understanding of the contribution of 
senescent cells to disease comes from animal mod-
els for human conditions. However, it remains to be 
shown that senolysis in humans is safe or effective, 
which is a prerequisite for devising treatments for 
patients. The study of long-term effects in rodents is 
limited to 2–3 years after senolysis, which is a much 
shorter time frame than their potential use in humans. 
Therefore, possible long-term toxic effects or nega-
tive consequences of senescent cell elimination that 
require longer observation times simply cannot be 
assessed with our current models and tools. It is clear 
that the immune system has the capacity to eliminate 
senescent cells in certain contexts; however, the clear-
ance process seems to become dysfunctional with age 
and in disease, possibly explaining the accumulation 
of senescent cells with age273. As the cell components 

of the immune system are also subjected to senescence, 
it will be important to determine whether senothera-
pies eliminate these cells and whether the elimination 
of senescent immune cells contributes to or mediates 
the effects of senotherapies. In addition, harnessing the 
intrinsic ability of the immune system to target these 
cells, perhaps through engineered T cells, may hold 
promise for novel therapeutics. In summary, cellular 
senescence is clearly more complex and nuanced than 
initially thought, making diverse and occasionally 
contrasting contributions to physiology and ageing. 
Importantly, the many years of basic research in this 
field have set the foundations for a now exploding bio-
tech and industrial activity devoted to turning such 
knowledge into treatments for patients. The next few 
years will see whether its promise is fulfilled: exciting 
times lie ahead.
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