Six new species of *Athaumasta* Hampson, 1906 (Lepidoptera, Noctuidae, Bryophilinae) from the mountains of Kazakhstan, Russian Altai and Mongolia

ANTON V. VOLYNKIN¹, ², ⁷, AIDAS SALDAITIS³, SERGEY V. TITO⁴ & ANDRO TRUUVERK⁵, ⁶

¹ Altai State University, Lenina Av. 61, RF-656049, Barnaul, Russian Federation. E-mails: barsine@yahoo.com; volynkin_a@mail.ru

² National Research Tomsk State University, Lenina Av., 36, RF-634050, Tomsk, Russia

³ Nature Research Centre, Akademijos str., 2, LT-08412, Vilnius-21, Lithuania. E-mail: saldrasa@gmail.com

⁴ The Research Centre for Environmental “Monitoring”, Pavlodar State University, Lomova str. 64, KZ-140008, Pavlodar, Kazakhstan

⁵ Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia

⁶ Natural History Museum, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia

⁷ Corresponding author

Received 13 May 2019 | Accepted by V. Pešić: 15 June 2019 | Published online 16 June 2019.

Abstract

Six new species of the bryophiline genus *Athaumasta* Hampson, 1906 are described from the mountains of north-eastern and eastern Kazakhstan, Russian Altai and Western Mongolia: *A. dzhungarica* Volynkin & Saldaitis, *sp. nov.* (W Mongolia), *A. kurchuma* Volynkin & Titov, *sp. nov.* (E Kazakhstan), *A. arida* Volynkin & Saldaitis, *sp. nov.* (SE Russian Altai and W Mongolia), *A. etugen* Volynkin & Saldaitis, *sp. nov.* (W Mongolia), *A. tarbagata* Volynkin, Titov & Saldaitis, *sp. nov.* (E Kazakhstan) and *A. kuchinichi* Volynkin, Titov & Saldaitis, *sp. nov.* (NE Kazakhstan). The species status of new taxa is proved based on morphological and molecular data as well. The checklist of valid taxa of the genus is provided. Adults and genitalia of new and related species are illustrated. The habitats of the new and some related species are illustrated.

Key words: *Athaumasta*, new species, COI 5’ sequences, Central Asia, Siberia, Kazakhstan, Altai, Mongolia.

Introduction

The genus *Athaumasta* Hampson, 1906 is a noctuid genus of the subfamily Bryophilinae, distributed from Central Asia through mountains of South Siberia to the Korean Peninsula. The genus was long time considered to be a member of the subfamily Cucullinae (Poole 1989) and was transferred to Acronictinae by Kononenko *et al.* (1998). Later, it was transferred to Bryophilinae by Kononenko (2005). However, in the checklist of Palaearctic genera of the subfamily Bryophilinae (Fibiger *et al.* 2009) the genus was missing. The primary data on Siberian taxa of the genus was provided by Kononenko (2005; 2016). The
six unidentified species were recognized. Comparison of their COI 5’ sequences and genitalia with those of known taxa of the genus proved their belonging to new, yet undescribed species. The species are described below as new.

Material and methods

Abbreviations used: AFM = coll. Alessandro Floriani (Milan, Italy); ASV = coll. Aidas Saldaïtis (Vilnius, Lithuania); CAV = coll. A.V. Volynkin (Barnaul, Russia); HT = holotype; NHMUK (formerly BMNH) = Natural History Museum, London (United Kingdom); MCK = coll. M. Černila (Kamnik, Slovenia); MDS = coll. M. Dvořák (Smrčná, Czech Republic); PGM = coll. Péter Gyulai (Miskolc, Hungary); PT = paratype; ST = syntype; STP = coll. S.V. Titov (Pavlodar, Kazakhstan); ZISP = Zoological Institute of Russian Academy of Sciences (St. Petersburg, Russia); ZMB = Museum für Naturkunde (Berlin, Germany).

Most COI 5’ barcode sequences were obtained through sequencing at the Department of Zoology, Institute of Ecology and Earth Sciences (University of Tartu, Estonia) using standard methods (described by Ūnap et al. 2016; Saldaïtis et al. 2018). Some other COI 5’ barcodes were obtained through sequencing at the Canadian Centre for DNA Barcoding (CCDB, Guelph) (Table 1). The barcode sequences were compared using neighbor-joining trees constructed using the Kimura-2-Parameter distance model (Fig. 76).

Athaumasta Hampson, 1906

Thaumasta Staudinger, 1871, *Catalog der Lepidopteren des europaeischen Faunegebiets* (Edn. 2) 1871: 79, a junior homonym of *Thaumasta* Gistl, 1848 (Crustacea).

Type species: *Polia expressa* Lederer, 1855, by original designation.

Diagnosis. *Athaumasta* is closely related to the genera *Victrix* Staudinger, 1879 and *Bryophila* Treitschke, 1825, but its members are easily recognizable by their broader forewings with the characteristic pattern described below, which is rather uniform within the genus. Male antenna of typical *Athaumasta* is bipectinate, whereas in *Victrix* and *Bryophila* male antennae are ciliate. Only the *miltina* species-group has filiform antennae. The male genitalia of *Athaumasta* is also very similar to those of the genus *Bryophila* (subgenera *Bryophila* and *Moureia* Orfila & Rossi, 1956) and *Victrix* (subgenera *Rasihia* Koçak, 1989 and *Micromima* Matov, Fibiger & L. Ronkay, 2009), but the distal part of its uncus is dorso-ventrally flattened (uncus is evenly cylindrical in *Bryophila* and *Victrix*), and the valva strongly narrowed distally and pointed apically (that is broader and rounded distally in *Bryophila*, *Moureia* and *Micromima*). In the *miltina* species-group, the distal section of valva is slightly broadened with a rounded tip (similar to *Bryophila*, *Moureia* and *Micromima*), and the uncus is strongly broadened and swollen basally and medially, and the valva shape of all *Athaumasta* species is similar to that of *Victrix* (*Rasihia*), but the dorso-ventrally flattened tip of uncus is characteristic for the genus and can be considered as an autapomorphic feature. In addition, in *Athaumasta* the tip of uncus is blunted (like in *Moureia* and unlike *Bryophila*, *Rasihia* and *Micromima*, which have a pointed claw-like tip of uncus); the tip of harpe is pointed (that is rounded in *Bryophila* and *Micromima*; in *Moureia* that is pointed, but the harpe is longer and reaches the tip of valva); the aedeagus has no heavily sclerotized carinal plate (present in *Moureia*); the vesica is broadly saccate (that is narrowly tubular in *Bryophila* and much narrower in *Rasihia* and *Micromima*). In female genitalia of *Athaumasta*, the heavily sclerotized anterior section of ductus bursae is characteristic.
TABLE 1. *Athaumastia* COI 5' sequence vouchers.

<table>
<thead>
<tr>
<th>Species</th>
<th>Locality</th>
<th>BOLD voucher</th>
<th>GenBank voucher</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. dzhungarica sp. n., HT</td>
<td>W Mongolia, Ovkhoo-Ula Mt.</td>
<td>AVLEP068-11</td>
<td>MN023167</td>
</tr>
<tr>
<td>A. dzhungarica sp. n., PT</td>
<td>W Mongolia, Ovkhoo-Ula Mt.</td>
<td>AVLEP068-11</td>
<td>MN023168</td>
</tr>
<tr>
<td>A. dzhungarica sp. n., PT</td>
<td>W Mongolia, Arshantyn-Nuruu Mts.</td>
<td>AVLEP068-11</td>
<td>MN023168</td>
</tr>
<tr>
<td>A. golomto , PT</td>
<td>W Mongolia, Mogojin-Gol valley</td>
<td>AVLEP068-11</td>
<td>MN023168</td>
</tr>
<tr>
<td>A. golomto , PT</td>
<td>W Mongolia, Mogojin-Gol valley</td>
<td>AVLEP068-11</td>
<td>MN023168</td>
</tr>
<tr>
<td>A. golomto , PT</td>
<td>W Mongolia, Adzh-Bogd-Uul Mts.</td>
<td>AVLEP068-11</td>
<td>MN023168</td>
</tr>
<tr>
<td>A. golomto , PT</td>
<td>W Mongolia, vic. of Manakh</td>
<td>MN023166</td>
<td></td>
</tr>
<tr>
<td>A. kurchuma sp. n., HT</td>
<td>E Kazakhstan, vic. of Karatogai vill.</td>
<td>MN023154</td>
<td></td>
</tr>
<tr>
<td>A. kurchuma sp. n., HT</td>
<td>E Kazakhstan, vic. of Karatogai vill.</td>
<td>MN023155</td>
<td></td>
</tr>
<tr>
<td>A. kurchuma sp. n., PT</td>
<td>E Kazakhstan, Bukombai Mt. massif</td>
<td>MN023156</td>
<td></td>
</tr>
<tr>
<td>A. pekariskyi , PT</td>
<td>Russia, Altai Republic, vic. of Aktash vill.</td>
<td>AVLEP068-11</td>
<td>MN023154</td>
</tr>
<tr>
<td>A. pekariskyi , PT</td>
<td>Russia, Altai Republic, Kurai Stepe</td>
<td>AVLEP068-11</td>
<td>MN023154</td>
</tr>
<tr>
<td>A. arida sp. n., HT</td>
<td>Russia, Altai Republic, Chuya Steppe</td>
<td>AVLEP068-11</td>
<td>MN023154</td>
</tr>
<tr>
<td>A. arida sp. n., PT</td>
<td>Russia, Altai Republic, Chuya Steppe</td>
<td>AVLEP068-11</td>
<td>MN023154</td>
</tr>
<tr>
<td>A. arida sp. n., PT</td>
<td>Russia, Altai Republic, Chuya Steppe</td>
<td>AVLEP068-11</td>
<td>MN023154</td>
</tr>
<tr>
<td>A. arida sp. n., PT</td>
<td>Russia, Altai Republic, Chuya Steppe</td>
<td>AVLEP068-11</td>
<td>MN023154</td>
</tr>
<tr>
<td>A. arida sp. n., PT</td>
<td>Russia, Altai Republic, Chuya Steppe</td>
<td>AVLEP068-11</td>
<td>MN023154</td>
</tr>
<tr>
<td>A. arida sp. n., PT</td>
<td>Russia, Altai Republic, Chuya Steppe</td>
<td>AVLEP068-11</td>
<td>MN023154</td>
</tr>
<tr>
<td>A. arida sp. n., PT</td>
<td>Russia, Altai Republic, Chuya Steppe</td>
<td>AVLEP068-11</td>
<td>MN023154</td>
</tr>
<tr>
<td>A. arida sp. n., PT</td>
<td>W Mongolia, Arshantyn-Nuruu Mts.</td>
<td>AVLEP068-11</td>
<td>MN023154</td>
</tr>
<tr>
<td>A. arida sp. n., PT</td>
<td>W Mongolia, Hundijn-Gol river valley</td>
<td>AVLEP068-11</td>
<td>MN023154</td>
</tr>
<tr>
<td>A. etugen sp. n., HT</td>
<td>W Mongolia, Hundijn-Gol river valley</td>
<td>AVLEP068-11</td>
<td>MN023154</td>
</tr>
<tr>
<td>A. etugen sp. n., PT</td>
<td>W Mongolia, Hundijn-Gol river valley</td>
<td>AVLEP068-11</td>
<td>MN023154</td>
</tr>
<tr>
<td>A. argillacea , PT</td>
<td>E Kazakhstan, Zaisan Valley, Kiin-Kirish</td>
<td>BC ZSM Lep 94108</td>
<td>MN023153</td>
</tr>
<tr>
<td>A. argillacea , PT</td>
<td>E Kazakhstan, Zaisan Valley, Kiin-Kirish</td>
<td>BC ZSM Lep 94109</td>
<td>MN023152</td>
</tr>
<tr>
<td>A. tarbagata sp. n., HT</td>
<td>E Kazakhstan, Tarbagata Mts, Tarbagata</td>
<td>MN023163</td>
<td></td>
</tr>
<tr>
<td>A. tarbagata sp. n., PT</td>
<td>E Kazakhstan, Tarbagata Mts, Tarbagata</td>
<td>MN023163</td>
<td></td>
</tr>
<tr>
<td>A. tarbagata sp. n., PT</td>
<td>E Kazakhstan, Tarbagata Mts, Tarbagata</td>
<td>MN023163</td>
<td></td>
</tr>
<tr>
<td>A. tarbagata sp. n., PT</td>
<td>E Kazakhstan, Tarbagata Mts, Tarbagata</td>
<td>MN023163</td>
<td></td>
</tr>
<tr>
<td>A. tarbagata sp. n., PT</td>
<td>E Kazakhstan, Tarbagata Mts, Tarbagata</td>
<td>MN023163</td>
<td></td>
</tr>
<tr>
<td>A. tarbagata sp. n., PT</td>
<td>E Kazakhstan, Tarbagata Mts, Tarbagata</td>
<td>MN023163</td>
<td></td>
</tr>
<tr>
<td>A. kuchinichi sp. n., HT</td>
<td>NE Kazakhstan, Bayanaulu Mts., Toragyry</td>
<td>MN023159</td>
<td></td>
</tr>
<tr>
<td>A. kuchinichi sp. n., PT</td>
<td>NE Kazakhstan, Bayanaulu Mts., Toragyry</td>
<td>MN023157</td>
<td></td>
</tr>
<tr>
<td>A. kuchinichi sp. n., PT</td>
<td>NE Kazakhstan, Bayanaulu Mts., Toragyry</td>
<td>MN023158</td>
<td></td>
</tr>
<tr>
<td>A. expressa , toptype</td>
<td>E Kazakhstan, vic. of Ust-Kamenogorsk</td>
<td>AVLEP070-11</td>
<td></td>
</tr>
<tr>
<td>A. expressa</td>
<td>Russian Altai, vic. of Bely Bom vill.</td>
<td>AVLEP078-11</td>
<td></td>
</tr>
<tr>
<td>A. expressa</td>
<td>Russian Altai, vic. of Aktash vill.</td>
<td>AVLEP071-11</td>
<td></td>
</tr>
<tr>
<td>A. expressa</td>
<td>Russian Altai, vic. of Aktash vill.</td>
<td>AVLEP075-11</td>
<td></td>
</tr>
<tr>
<td>A. expressa</td>
<td>Russian Altai, vic. of Aktash vill.</td>
<td>AVLEP076-11</td>
<td></td>
</tr>
<tr>
<td>A. expressa</td>
<td>Russian Altai, vic. of Aktash vill.</td>
<td>AVLEP077-11</td>
<td></td>
</tr>
<tr>
<td>A. expressa</td>
<td>Russian Altai, vic. of Aktash vill.</td>
<td>AVLEP077-11</td>
<td></td>
</tr>
<tr>
<td>A. expressa</td>
<td>Russian Altai, Kurai Steppe</td>
<td>MN023169</td>
<td></td>
</tr>
<tr>
<td>A. expressa</td>
<td>Russian Altai, Kurai Steppe</td>
<td>MN023148</td>
<td></td>
</tr>
<tr>
<td>A. expressa</td>
<td>Russian Altai, Kurai Steppe</td>
<td>MN023149</td>
<td></td>
</tr>
<tr>
<td>A. expressa</td>
<td>Russian Altai, vic. of Cherga vill.</td>
<td>AVLEP073-11</td>
<td></td>
</tr>
<tr>
<td>A. expressa</td>
<td>Russian Altai, Tigiriksky Ridge</td>
<td>AVLEP073-11</td>
<td></td>
</tr>
</tbody>
</table>

Description. External morphology of adults.

Male antenna bipectinate (filiform in the *mitilina* species-group), female antenna filiform. Head, thorax, patagia and tegulae orange from orange and ochreous to greyish green or brownish olive. Abdomen dark brown with ochreous scales. Forewing ground colour from orange and ochreous to greyish green or brownish olive, often irrorated with blackish or grey scales; wing pattern well developed (in the *pekariskyi* species-group may be diffuse); basal area as ground colour. Transverse lines double: subbasal, postmedial and subterminal lines blackish inwardly and whitish outwardly, antemedial line whitish inwardly and blackish outwardly; subbasal line dentate, antemedial line irregularly wavy, postmedial line S-shaped curved, dentate on veins, subterminal line sinuous, discontinuous; terminal line as row of black dots on veins. Reniform and orbicular stigma as ground colour, with whitish margins edged by blackish scales along outer margin; claviform stigma as dark stroke, indistinct, sometimes absent. Cilia as ground colour with blackish spots on veins. Hindwing dark, greyish brown; discal spot as large dark grey; transverse line pale grayish brown; cilia grayish brown. **Male genitalia.** Uncus moderately long, cylindrical basally and dorso-ventrally flattened distally, slightly

Ecologica Montenegrina, 22, 2019, 1-26
curved at base with blunted apex; tegumen relatively short, penicular lobes narrow and rounded; transtilla broad, obtuse apically; juxta ovate, broad, shield-like, with two short trigonal apical processes; valva elongated, moderately broad, strongly narrowed distally, with pointed apex, its width vary within species; costal margin of valva slightly convex, dorsal margin slightly constricted at middle; clasper moderately long, distally broadened, S-shaped; harpe long, finger- or claw-shaped, evenly curved or almost straight, narrowed distally, with pointed apex; width of its basal and medial sections vary within species.

Aedeagus short, cylindrical, distally curved, with weakly scobinated carinal plate; vesica saccular, membranous, finely granulated, its basal part broad, globular, curved dorsally, with small plate-like cornutus in distal section (the expressa, nana and miltina species-groups) or without it (the pekarskyi and splendida species-groups); distal tube long and narrow. Female genitalia. Ovipositor short, broadly conical; papillae anales trapezoidal, with rounded edges; apophyses anteriores and posteriores of equal length, elongated and thin, as long as 8th abdominal segment; antrum broadly funnel-like, heavily sclerotized; ductus bursae as long as antrum or longer, its posterior section membranous, anterior section sclerotized; corpus bursae sack-like, membranous; appendix bursae situated postero-laterally, broadly conical.

Check list of valid species of the genus Athaumasta

The miltina species-group
– miltina (Püngeler, 1902)
– kyrkyza Pekarsky, 2017
– melyakhi Pekarsky, 2017
– lithoplasta (Hampson, 1908)
– kegena Pekarsky, 2018

The pekarskyi species-group
– dzhungarica Volynkin & Saldaitis, sp. nov.
– golomto Volynkin & Gyulai, 2018
– kurchuma Volynkin & Titov, sp. nov.
– pekarskyi Volynkin, 2012

The splendida species-group
– splendida O. Bang-Haas 1927

The expressa species-group
– arida Volynkin & Saldaitis, sp. nov.
– etugen Volynkin & Saldaitis, sp. nov.
– tarbagata Volynkin, Titov & Saldaitis, sp. nov.
– argillacea Volynkin & Pekarsky, 2016
– kuchinichi Volynkin, Titov & Saldaitis, sp. nov.
– expressa (Lederer, 1855)
– siderigera (Christoph, 1893)

The nana species-group
– nana (Staudinger, 1896)
– koreana L. Ronkay & Kononenko, 1998

Descriptions of new species

Athaumasta dzhungarica Volynkin & Saldaitis, sp. nov.
https://zoobank.org/urn:lsid:zoobank.org:act:53406E90-15E2-4A4B-A7B5-9DE09DD02D6 (Figs 1–3, 46, 47, 70)

Type material. Holotype (Figs 1, 46): male, “26–27.V.2015, SW Mongolia, Khovd aimak, Dzhungarian Gobi, Uvkhod-ula (Ovkhood-Uul) Mt., 1250 m, 45°48’ N, 91°06’ E, Yakovlev R.V & Yakovlev A.R. leg.”, GenBank voucher MN023167, slide AV4919♂ (Coll. NHMUK).

Paratypes. 5 males, 1 female, same data as in the holotype, GenBank voucher MN023168, slide AV4921♂ (Coll. CAV); 6 males, 19.VII.2009,W. Mongolia, Hovd aimak, Bulgan-gol basin, Arshantyn-

Remark. The specimens of A. dzhungarica were previously included into the type series of A. golomto (Volynkin & Gyulai 2018). However, comparison of their genitalia and COI 5′ sequences with those of true A. golomto proved their belonging to another species.

Diagnosis. Forewing length 15–16 mm in males (15.5 mm in the holotype) and 15.5 mm in female. Athaumasta dzhungarica (Figs 1–3) is very similar externally to A. golomto (Figs 4–9), but its orbicular and reniform stigmata are opened to the costa (those are more or less distinctly encircled in A. golomto), and its reniform stigma is usually slightly broader in general than that of A. golomto. The correct identification is often possible by the genitalia structures only. In the male genitalia, A. dzhungarica (Figs 46, 47) can be easily distinguished by the absence of a subapical diverticulum of vesica, which is present in A. golomto (Figs 48, 49). In addition, the juxta of A. dzhungarica is slightly narrower than that of A. golomto. The female genitalia of A. dzhungarica (Fig. 70) differ from those of A. golomto (Fig. 71) by the broader antrum and the anteriorly broadened anterior sclerotized section of ductus bursae.

Molecular data. COI 5′ sequences of three specimens of A. dzhungarica from two localities were compared with COI 5′ sequences of four specimens of A. golomto from three localities, three specimens of A. kurchuma from two localities and two paratype specimens of A. pekarskyi from two localities. The infraspecific variation of COI 5′ sequences of both, A. dzhungarica and A. golomto is 0.15%. The distance between the specimens of A. dzhungarica and the specimens of A. golomto is 1.54–1.86%; that between A. dzhungarica and A. pekarskyi is 1.86–2.02%; that between A. dzhungarica and A. kurchuma is 2.33–2.49%. The COI 5′ sequences of A. dzhungarica are characterized by the combination of one character state unique for the genus, 619(C), and two character states unique for the species-group, 427(C) and 451(T). The COI 5′ sequences of its closest relative A. golomto are characterized by the combination of two character states unique for the genus, 208(G) and 268(C), and four character states unique for the species-group, 22(G) and 86(A), 385(T) and 542(C) (Table 2).

<table>
<thead>
<tr>
<th>Species</th>
<th>Accession Numbers</th>
<th>COI 5' Sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. golomto PT (Adzh-Bogd-Uul)</td>
<td>AVLEP069-11</td>
<td>G T A T G C T C G C T G C C T C T C T T T T T T</td>
</tr>
<tr>
<td>A. golomto PT (Mogojin-Gol)</td>
<td>AVLEP064-11</td>
<td>G T A T G C T C G C T G C T C T C T T T T T T</td>
</tr>
<tr>
<td>A. golomto PT (Mogojin-Gol)</td>
<td>AVLEP067-11</td>
<td>G T A T G C T C G C T G C T C T C T T T T T T</td>
</tr>
<tr>
<td>A. golomto (Manchuria)</td>
<td>MN023166</td>
<td>G T A T G C T C G C T C T C T T T T T T</td>
</tr>
<tr>
<td>A. dzhungarica sp. n. HT (Ovkhoo Ula Mt)</td>
<td>MN023167</td>
<td>A G T A A C T T T G C G C T C T C T T T T T T</td>
</tr>
<tr>
<td>A. dzhungarica sp. n. PT (Ovkhoo-Ula Mt)</td>
<td>MN023168</td>
<td>A G T A A C T T T G C C G C T C T T T T T T</td>
</tr>
<tr>
<td>A. dzhungarica sp. n. PT (Akhunh-Nurun)</td>
<td>AVLEP068-11</td>
<td>A G T A A C T T T G C G C T C T T T T T T</td>
</tr>
<tr>
<td>A. golomto PT (Akhunh)</td>
<td>AVLEP061-11</td>
<td>A G T A T C T A T A T C T C T C T C T T T</td>
</tr>
<tr>
<td>A. pekarskyi PT (Kasrai)</td>
<td>AVLEP062-11</td>
<td>A G T A T C T A T A T C T C T C T C T T T</td>
</tr>
<tr>
<td>A. kurchuma sp. n. HT (Kurchum Ridge)</td>
<td>MN023154</td>
<td>A G C G A T T T G C C A T C T C T T C C C C C T</td>
</tr>
<tr>
<td>A. kurchuma sp. n. PT (Kurchum Ridge)</td>
<td>MN023155</td>
<td>A G C G A T T T G C C A T C T C T T C C C C C T</td>
</tr>
<tr>
<td>A. kurchuma sp. n. PT (Bokombai)</td>
<td>MN023156</td>
<td>A G C G A T T T G C C A T C T C T T C C C C C T</td>
</tr>
</tbody>
</table>

Distribution. Athaumasta dzhungarica is found in two small mountains massifs in the Dzhungarian Gobi in West Mongolia, whereas A. golomto is known from Mongolian and Chinese Altai and the Aj Bogd (or Adzh-Bogd-uul) mountain massif (Volynkin & Gyulai 2018).

Etymology. The species’ name refers to the area of its distribution, Dzhungarian Gobi in West Mongolia.
Figures 1–15. Athaumasta pekarskyi species-group: adults. 1, *A. dzhungarica*, HT male, W Mongolia (NHMUK); 2, *ditto*, PT male, W Mongolia (CAV); 3, *ditto*, PT female, W Mongolia (CAV); 4, *A. golomto*, HT male, W Mongolia (PGM); 5, *ditto*, PT male, W Mongolia (CAV); 6, *ditto*, PT male, W Mongolia (CAV); 7, *ditto*, PT male, W Mongolia (CAV); 8, *ditto*, PT male, W Mongolia (CAV); 9, *ditto*, PT female, W Mongolia (CAV); 10, *A. kurchuma*, HT male, E Kazakhstan (NHMUK); 11, *ditto*, PT female, E Kazakhstan (CAV); 12, *ditto*, PT male, E Kazakhstan (CAV); 13, *ditto*, PT female, E Kazakhstan (CAV); 14, *A. pekarskyi*, PT male, Russian Altai (CAV); 15, *ditto*, PT male, Russian Altai (CAV).
Figures 16–30. Athaumasta expressa species-group: adults. 16, A. arida, HT male, Russian Altai (NHMUK); 17, ditto, PT male, Russian Altai (CAV); 18, ditto, PT male, Russian Altai (CAV); 19, ditto, PT male, W Mongolia (CAV); 20, A. etugen, HT male, W Mongolia (NHMUK); 21, ditto, PT male, W Mongolia (CAV); 22, A. tarbagata, HT male, E Kazakhstan (NHMUK); 23, ditto, PT male, E Kazakhstan (CAV); 24, ditto, PT male, E Kazakhstan (CAV); 25, ditto, PT male, E Kazakhstan (CAV); 26, ditto, PT male, E Kazakhstan (CAV); 27, ditto, PT male, E Kazakhstan (CAV); 28, A. argillacea, PT male, E Kazakhstan (ZISP); 29, ditto, PT male, E Kazakhstan (CAV); 30, ditto, PT male, E Kazakhstan (CAV).
Figures 31–45. Athaumasta expressa species-group: adults. 31, *A. kuchinichi*, HT male, NE Kazakhstan (NHMUK); 32, *ditto*, PT male, NE Kazakhstan (CAV); 33, *ditto*, PT female, NE Kazakhstan (CAV); 34, *A. siderigera*, HT male, East Sayan (ZISP) (photo by A. Matov); 35, *A. expressa*, ST male, E Kazakhstan (ZMB) (photo by G. & L. Ronkay); 36, *ditto*, topotype male, E Kazakhstan (CAV); 37, *ditto*, male, Russian Altai (CAV); 38, *ditto*, male, Russian Altai (CAV); 39, *ditto*, male, E Kazakhstan (CAV); 40, *ditto*, male, Russian Altai (CAV); 41, *ditto*, male, Russian Altai (CAV); 42, *ditto*, male, Russian Altai (CAV); 43, *ditto*, female, Russian Altai (CAV); 44, *ditto*, female, Russian Altai (CAV); 45, *ditto*, female, E Kazakhstan (CAV).
Athaumasta kurchuma Volynkin & Titov, sp. nov.

https://zoobank.org/urn:lsid:zoobank.org:act:4F79D9C7-0B84-4699-A8BB-B3D9405E910D (Figs 10–13, 50, 51, 72)

Type material. Holotype (Figs10, 50): “02–03.VI.2013, E Kazakhstan, East Kazakhstan area, Kurchum district, Kurchum Ridge, 12 km NE of Karatogai vill., shrubby rocky steppe slopes, 740 m. 48°28’04.95” N, 84°36’09.88” E, Volynkin A.V., Titov S.V. & Černila M. leg.”, GenBank voucher MN023154, slide AV4918♂ Volynkin (Coll. NHMUK).

Paratypes. 6 males, 2 females, same data as in the holotype, GenBank voucher MN023155 , slides AV0948♂ and AV3133♀ Volynkin (Colls CAV, MDS & MCK); 3 males, 1 females, 09–10.VI.2012, E Kazakhstan, Kurchum distr., Altai Mts., Bukombai mountain massif, h=550 m, 48°13’N; 84°43’E, Yakovlev R.V. leg., GenBank voucher MN023156, slides AV2568♀ and AV5320♂ Volynkin (Coll. CAV); 2 females, [E Kazakhstan], S. Altai, Bukhtarma [river] SW, Bil’schenyamskoje, 22.VI.1999., leg. Churkin (Colls AFM & ASV); 2 males, 6.VI.2016, North-East Kazachstan, Chernyi Irtysh valley, 10 km SW of Boran settl., 410 m. 47°57’ N, 85°04’ E, Gorbunov P. leg. (Coll. MDS); 1 male, 7.VI.2016, North-East Kazachstan, SW Altai, Karazhalskie Mts., 14 km of Kokpety settl., 680 m. 48°50’ N, 82°13’ E, Gorbunov P. leg. (Coll. MDS).

Remark. The female of A. kurchuma was erroneously illustrated as A. pekarskyi by Volynkin & Gyulai (2018).

Diagnosis. Forewing length 14.5–15.5 mm in males (15.5 mm in the holotype) and 15–16.5 mm in females. Athaumasta kurchuma is a closest relative of A. pekarskyi distributed in southeastern Russian Altai and Tyva Republic (Volynkin 2012; Kononenko 2016). The new species (Figs 10–13) differs externally from A. pekarskyi (Figs 14, 15) by its less convex anal margin of forewing with less oblique tornus. The male genitalia of both species are similar (Figs 50–53), but in A. kurchuma the basal part of uncus is less massive, the vinculum is slightly shorter, the distal section of valva is longer, and the harpe is broader medially. The female genitalia of A. kurchuma (Fig. 72) differ from those of A. pekarskyi (Fig. 73) by their longer antrum, broader anterior sclerotized anterior section of ductus bursae, and broader corpus bursae.

Molecular data. COI 5’ sequences of three specimens of A. kurchuma from two localities were compared with COI 5’ sequences of two paratype specimens of A. pekarskyi from two localities, four specimens of A. golomto from three localities and three specimens of A. dzhungarica from two localities. The infraspecific variation of COI 5’ sequences of both, A. kurchuma and A. pekarskyi is 0%. The distance between the specimens of A. kurchuma and the specimens of A. pekarskyi is 1.08%; that between A. kurchuma and A. golomto is 2.49–2.65%; that between A. kurchuma and A. dzhungarica is 2.33–2.49%. Despite the relatively small distance between the COI 5’ sequences of A. kurchuma and A. pekarskyi, both species are characterized by unique combinations of character states. The COI 5’ sequences of A. kurchuma are characterized by the combination of two character states unique for the genus, 106(C) and 389(A), and two character states unique for the species-group: 574(C) and 616(C). The COI 5’ sequences of its closest relative A. pekarskyi are characterized by the combination of one character state unique for the genus, 317(A), and one character state unique for the species-group, 238(C). In addition, the COI 5’ sequences of A. kurchuma differ from those of A. pekarskyi by the character state 364: (C) in A. kurchuma and (T) in A. pekarskyi (Table 2).

Distribution and bionomics. The species is found in the foothills of Kurchum Ridge (East Kazakhstan). Athaumasta kurchuma inhabits stony steppe slopes at low elevations (550–740 m) (Fig. 77).

Etymology. The species’ name refers to its type locality, Kurchum Ridge in East Kazakhstan.
Athaumasta arida Volynkin & Saldaitis, sp. nov.

https://zoobank.org/urn:lsid:zoobank.org:act:CADE0C4E5-F009-4F8F-B201-7347185C72CE
(Figs 16–19, 54, 55)

Type material. Holotype (Figs 16, 54): male, “13.VI.2010, Russia, Altai Republic, Kosh-Agach district, Kuraisky Ridge, 5 km E of Chagan-Uzun village, 50°24′27″ N, 87°35′50″ E. 2130 m. Volynkin A.V. leg.‖, GenBank voucher MN023144, slide AV4912♂ Volynkin (Coll. NHMUK).

Diagnosis. Forewing length 13.5–15 mm in males (14.5 mm in the holotype). Specimens from Mongolia (Fig. 19) are slightly smaller in size than those from the Russian Altai (Figs 16–18). *Athaumasta arida* (Figs 16–19) is very similar externally to *A. expressa* (Figs 35–45) and can be distinguished by the genitalia structures only. In the male genitalia, *A. arida* (Figs 54, 55) differs from *A. expressa* (Figs 64–68) by its longer harpe, slightly longer valva with more massive distal section, and smaller cornutus in vesica. Compared to those of *A. kuchinichi* (Figs 62, 62), the male genitalia of *A. arida* have longer harpe and slightly broader vesica. The male genitalia of *A. arida* are also similar to those of *A. siderigera* (Fig. 69), but the vinculum is more robust, the ventral margin of valva is less convex, the harpe is slightly shorter, and the vesica is much broader. The moths of *A. arida* (Figs 16–19) differ clearly from *A. siderigera* (Fig. 34) by their more robust body and orange or olive green forewing ground color (that is blackish in *A. siderigera*).

Female unknown.

Molecular data. COI 5′ sequences of nine specimens of *A. arida* from three localities were compared with COI 5′ sequences of eleven specimens of *A. expressa* from six localities, three specimens of *A. kuchinichi* from one locality, six specimens of *A. tarbagata* from two localities and two paratype specimens of *A. argillacea* from one locality. The infraspecific variation of COI 5′ sequences of *A. arida* is 0.00–0.62%; that of *A. expressa* is 0.00–0.77%. The distance between specimens of *A. arida* and *A. expressa* is 4.11–4.99%; that between *A. arida* and *A. kuchinichi* is 3.78–4.15%; that between *A. arida* and *A. argillacea* is 3.62–3.98%; that between *A. arida* and *A. tarbagata* is 3.86–4.65%. The COI 5′ sequences of *A. arida* are characterized by the combination of two character states unique for the genus, 19(C) and 87(A), and a character state unique for the species-group, 274(T) (Table 3).

Distribution. The species is widespread from the Chuya Steppe in the southeastern Russian Altai to the southern part of Mongolian Altai. It inhabits dry stony steppe slopes and semi-deserts at medium altitudes (1700–2300 m) (Figs 78, 79).

Etymology. The species’ name refers to its habitat in dry biotopes.
Figure 76. Neighbour-joining tree of COI (658bp) partial gene sequences of *Athaumasta* spp., with *Hadena albimacula* as an outgroup.
Athaumasta etugen Volynkin & Saldaitis, sp. nov.
https://zoobank.org/urn:lsid:zoobank.org:act:8E5B6C53-5FA1-4B1A-8348-2743F3AF757C
(Figs 20, 21, 56, 57)

Paratype. 1 male, same data as in the holotype, GenBank voucher MN023152, slide AV1445♂ Volynkin (Coll. CAV).

Diagnosis. Forewing length 14–15 mm in males (15 mm in the holotype). Athaumasta etugen is a closest relative of A. arida. Externally, A. etugen (Figs 20, 21) differs from Mongolian specimens of A. arida (Fig. 19) by the broader forewing with less oblique tornus. The male genitalia of A. etugen (Figs 56, 57) differ clearly from those of A. arida (Figs 54, 55) by the much broader harpe with convex outer margin, the more convex ventral margin of valva, the longer broad section of vesica and the larger cornutus. Female unknown.

Molecular data. COI 5’ sequences of both specimens of A. etugen were compared with nine specimens of A. arida from three localities (including one sympatric specimen) and specimens of A. expressa, A. kuchinichi, A. argillacea and A. tarbagata as well. The infraspecific variation of COI 5’ sequences of A. etugen is 0.00%. The distance between specimens of A. etugen and A. arida is 1.39–2.03%. It is worth to note that the distance between specimens of A. etugen and the Mongolian specimens of A. arida (including the sympatric one) is higher (2.01–2.03%) that between A. etugen and the specimens of A. arida from the Russian Altai (1.39–1.42%). The distance between specimens of A. etugen and A. expressa is 4.27–4.77%; that between A. etugen and A. kuchinichi is 4.27%; that between A. etugen and A. argillacea is 3.46%; that between A. etugen and A. tarbagata is 4.10–4.44%. The COI 5’ sequences of A. arida are characterized by the combination of three character states unique for the genus, 100(C), 205(C) and 472(G), and one character state unique for the species-group, 292(T) (Table 3).

Distribution. Athaumasta etugen is known so far only from its type locality in West Mongolia. In its type locality, A. etugen is sympatric with A. arida. The species inhabits stony semi-deserts at medium altitudes (1800 m) (Fig. 79).

Etymology. “Etugen” is the goddess of the earth in Mongolian mythology.

Athaumasta tarbagata Volynkin, Titov & Saldaitis, sp. nov.
https://zoobank.org/urn:lsid:zoobank.org:act:035EB489-FB6D-43F8-B8C3-BE5E10AB364D
(Figs 22–27, 58, 59)

Type material. Holotype (Figs 22, 58): male, “30.IV.2015, E Kazakhstan, Urdzhar district, W Tarbagarai Mts, 9.5 km ENE of Tasaryk village, 705 m. 47°08'04.6''N, 081º24'51.0''E, bottom of rocky slope, Volynkin A.V. & Titov S.V. leg.”, GenBank voucher MN023163, slide AV4917♂ Volynkin (Coll. NHMUK);

Paratypes. 5 males, same data as in the holotype, GenBank vouchers MN023160, MN023161 and MN023162 (Coll. CAV); 3 males, 01.V.2015, E Kazakhstan, Urdzhar district, W Tarbagarai Mts, 8 km ENE of Altyynshoky (Predgornoe) village, 890 m. 47°11.607’N, 81°10.085’E, mesophilous rocky slopes of canyon, Volynkin A.V. & Titov S.V. leg., GenBank vouchers MN023164 and MN023165, slides AV4916♂ and AV5319♂ Volynkin (Coll. CAV); 1 male, Kazakhstan E, Saur Mts., Zhanaturmis, 8.VI.2000., leg. Klimenko (Coll. AFM); 4 males, 10.V.2017, E Kazakhstan, Urdzhar district, 4 km SW of Nekrasovka vill., Kyzylbeltai Mts., h~920 m. 47,21° N, 81,35° E, Nakonechny A. leg. (Coll. MDS); 5 males, 16.V.2017, E Kazakhstan, Ayagoz district, 34 km SE of Tarbagatai vill., Okpekty Mts., h~1505 m. 47,60° N, 81,64° E, Nakonechny A. leg. (Coll. MDS).

Ecologica Montenegrina, 22, 2019, 1-26
Figure 77. East Kazakhstan, Kurchum district, Kurchum Ridge, 12 km NE of Karatogai vill., 740m. 48°28′04.95″N 84°36′09.88E, 02.VI.2013, the type locality of *A. kurchuma* (photo by A.V. Volynkin).

Figure 78. Russia, Altai Republic, Kosh-Agach district, Chuya Steppe at foothills of Kuraisky Ridge, 5 km E of Chagan-Uzun village, 2100m, 50°24′27″N 87°35′50″E, 10.VI.2010, the type locality of *A. arida* (photo by A.V. Volynkin).
Figure 79. West Mongolia, Khovd aimak, Mongolian Altai Mts., Hundijn-Gol river valley (Bodonchijn-Gol river basin), 1800 m, 18.V.2012, the type locality of A. etugen and the habitat of A. arida (photo by M. Černila).

Figure 80. East Kazakhstan, Urdzhar district, W Tarbagarai Mts, 9.5 km ENE of Tasaryk village, 705m. 47°08'04.6"N 081°24'51.0"E, 30.IV.2015, the type locality of A. tarbagata (photo by A.V. Volynkin).
Figure 81. East Kazakhstan, Zaisan Valley, 15.5 km NNE of Amanat village, Kiin-Kirish Massif, clay/chalk hills, 447 m. 48°7.885″N 84°29.378″E, 06.V.2015, the type locality of *A. argillacea* (photo by A.V. Volynkin).

Figure 82. North East Kazakhstan, Bayanaul District, Bayanaul Mts., rock area Kempirtas, 50°51′24.65″N 75°34′37.21″E, 13.VI.2013, the habitat of *A. kuchinichi* (photo by S.V. Titov).
Diagnosis. Forewing length 14–16 mm in males (16 mm in the holotype). *Athaumasta tarbagata* (Figs 22–27) is a sister species of *A. argillacea* (Figs 28–30), from which it differs externally by its slightly larger size and more elongated forewing. The male genitalia of *A. tarbagata* (Figs 58, 59) differ from those of *A. argillacea* (Figs 60, 61) by the more massive basal part of uncus, the slightly broader juxta, the pointed tip of vinculum (that is rounded in *A. argillacea*), the much broader harpe, and the slightly broader vesica with much larger cornutus.

Female unknown.

Molecular data. COI 5' sequences of six specimens of *A. tarbagata* were compared with two paratype specimens of *A. argillacea* from one locality and specimens of *A. expressa, A. kuchinichi, A. etugen* and *A. arida* as well. The infraspecific variation of COI 5' sequences of *A. tarbagata* is 0.00–0.76%; that of *A. argillacea* is 0.00%. The distance between specimens of *A. tarbagata* and *A. argillacea* is 1.38–1.54%; that between *A. tarbagata* and *A. expressa* is 2.17–3.13%; that between *A. tarbagata* and *A. etugen* is 2.49%; that between *A. tarbagata* and *A. arida* is 3.86–4.65%. The COI 5' sequences of *A. tarbagata* are characterized by the combination of one character state unique for the genus, 124(C), and one character state unique for the species-group, 646(C), while the COI 5' sequences of *A. argillacea* are characterized by one character state unique for the species-group, 403(C). In addition, the COI 5' sequences of *A. tarbagata* differ from those of *A. argillacea* by the character states 160 (‘A’ in *A. tarbagata* and ‘G’ in *A. argillacea*), 169 (‘C’ in *A. tarbagata* and ‘T’ in *A. argillacea*), 367 (‘C’ in *A. tarbagata* and ‘T’ in *A. argillacea*) and 400 (‘C’ in *A. tarbagata* and ‘T’ in *A. argillacea*) (Table 3).

Distribution. *Athaumasta tarbagata* is known from several localities in the Saur-Tarbagatai mountain massif in East Kazakhstan. In the Tarbagatai Ridge, the species inhabits stony steppe and mesophilous slopes at medium altitudes (705–890 m) (Fig. 80). *Athaumasta argillacea* inhabits other biotope, clay and chalk hills covered by ground-dwelling lichens (Fig. 81).

Etymology. The species’ name refers to its type locality, the Tarbagatai Ridge.

Athaumasta kuchinichi Volynkin, Titov & Saldaitis, *sp. nov.*

Type material. Holotype (Figs 31, 62): male, “15.V.2017, NE Kazakhstan, Pavlodar Region, Bayanaul Distr., Bayanaul Mts., SE vic. of Torajgyr Lake, 50°51'56.97''N 75°40'45.96''E, 400m, steppe between rocks and an elder grove, leg. A.V. Volynkin, S.V. Titov & M.S. Ivanova”, GenBank voucher MN023159, slide AV4910♂ Volynkin (Coll. NHMUK).

Paratypes. 2 males, same data as in the holotype, GenBank vouchers MN023157 and MN023158, slides AV4911♀, AV4923♀ Volynkin (Coll. CAV); 2 males, 4 females, same data (Coll. STP); 1 male, 1 female, same locality and collectors, but 17.V.2017 (Coll. STP); 1 male, 12–14.VI.2014, NE Kazakhstan, Pavlodar Area, Bayanaul district, Bayanaul Mts., eastern coast of Torajgyr lake, steppe near rocks, 380 m. 50°52’06” N, 75°40’17” E, Volynkin A.V. & Titov S.V. leg. (Coll. CAV); 1 male, 11.V.2014, NE Kazakhstan, Pavlodar Region, Bayanaul area, lake Torajgyr, at light, 50°51’57.23”N 75°40’22.89”E, Titov S.V. leg. (Coll. STP); 1 male, NE Kazakhstan, Bayanaul area, Bayanaul State Nature Park, Bayanaul mts., Kurkeli natural landmark, 50°44’34.00”N 75°38’16.80”E, 02.V.2012, S.V. Titov leg. (Coll. STP); 3 males, 1 female, same locality and collector, 12.V.2012 (Coll. STP); 2 males, same locality, 14.VI.2013, M. Černila, S.V. Titov & A.V. Volynkin leg. (Coll. STP); 2 males, NE Kazakhstan, Bayanaul area, Bayanaul State National Park, Bayanaul mts., vic. of Shonai vill., 50°48’53.88”N 75°44’22.45”E, 29.VI.2013, S.M. Reznichenko leg. (Coll. STP); 2 males, 1 female, same locality, 05.V.2014, S.V. Titov leg. (Coll. STP); 17 males, 8 females, NE Kazakhstan, Bayanaul area, Bayanaul State National Nature Park, Bayanaul mts., rock area Kempirtas, 50°51’24.65”N 75°34’37.21”E, 13.VI.2013, M. Černila, S.V. Titov & A.V. Volynkin leg. (Coll. STP); 3 females, same locality, 17.V.2014, S.V. Titov leg., slide AV1813♀ (Colls. STP & CAV); 3 males, 1 female, same locality, 13.VI.2014, S.V. Titov & A.V. Volynkin leg. (Coll. STP); 4 males, 2 females, same locality, 27.V.2015, M. Černila, S.V. Titov & M. Kučinić leg. (Coll. STP); 1 male, 1 female, 25.V.2015,
TABLE 3

<table>
<thead>
<tr>
<th>A. arida sp. n. HT (Chagan-Uzun) (MN023144)</th>
<th>A. kuchinichi sp. n.</th>
<th>A. tarbagata sp. n. (Tigireksky Ridg) (Zaisan Valley) (BC ZSM Lep 972)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C A T G A A T T T A T A C C T T A T C C T T</td>
<td>C C C C T T T AT A A T G T A T</td>
<td>T T C C C C T T A A A A T T A T</td>
</tr>
<tr>
<td>A. arida sp. n. HT (Chagan-Uzun) (MN023145)</td>
<td>A. kuchinichi sp. n.</td>
<td>A. tarbagata sp. n. (Chagan-Uzun) (MN023173)</td>
</tr>
<tr>
<td>C A T G A A T T T A T A C C T T A T C C T T</td>
<td>C C C C T T T AT A A T G T A T</td>
<td>T T C C C C T T A A A A T T A T</td>
</tr>
<tr>
<td>A. arida sp. n. HT (Chagan-Uzun) (MN023146)</td>
<td>A. kuchinichi sp. n.</td>
<td>A. tarbagata sp. n. (Chagan-Uzun) (AVLEP074-11)</td>
</tr>
<tr>
<td>C A T G A A T T T A T A C C T T A T C C T T</td>
<td>C C C C T T T AT A A T G T A T</td>
<td>T T C C C C T T A A A A T T A T</td>
</tr>
<tr>
<td>A. arida sp. n. HT (Chagan-Uzun) (MN023147)</td>
<td>A. kuchinichi sp. n.</td>
<td>A. tarbagata sp. n. (Arshantuyu-Nuran Mts) (MN023150)</td>
</tr>
<tr>
<td>C A T G A A T T T A T A C C T T A T C C T T</td>
<td>C C C C T T T AT A A T G T A T</td>
<td>T T C C C C T T A A A A T T A T</td>
</tr>
<tr>
<td>A. arida sp. n. HT (Chagan-Uzun) (MN023151)</td>
<td>A. kuchinichi sp. n.</td>
<td>A. tarbagata sp. n. (Chagan-Uzun) (MN023152)</td>
</tr>
<tr>
<td>C A T G A A T T G T T T T T T T T C C C C T C T T A A A T C T A C</td>
<td>C C C C T T T AT A A T G T A T</td>
<td>T T C C C C T T A A A A T T A T</td>
</tr>
<tr>
<td>A. arida sp. n. HT (Handjir-Gol river) (MN023153)</td>
<td>A. kuchinichi sp. n.</td>
<td>A. tarbagata sp. n. (Handjir-Gol river) (MN023152)</td>
</tr>
<tr>
<td>C A T G A A T T G T T T T T T T T C C C C T C T T A A A T C T A C</td>
<td>C C C C T T T AT A A T G T A T</td>
<td>T T C C C C T T A A A A T T A T</td>
</tr>
<tr>
<td>A. arida sp. n. HT (Zaisan Valley) (BC ZSM Lep 94108)</td>
<td>A. kuchinichi sp. n.</td>
<td>A. tarbagata sp. n. (Zaisan Valley) (BC ZSM Lep 94109)</td>
</tr>
<tr>
<td>C A T G A A T T G T T T T T T T T C C C C T C T T A A A T C T A C</td>
<td>C C C C T T T AT A A T G T A T</td>
<td>T T C C C C T T A A A A T T A T</td>
</tr>
<tr>
<td>A. arida sp. n. HT (Tasaryk vill.) (MN023163)</td>
<td>A. kuchinichi sp. n.</td>
<td>A. tarbagata sp. n. (Tasaryk vill.) (MN023161)</td>
</tr>
<tr>
<td>C A T G A A T T G T T T T T T T T C C C C T C T T A A A T C T A C</td>
<td>C C C C T T T AT A A T G T A T</td>
<td>T T C C C C T T A A A A T T A T</td>
</tr>
<tr>
<td>A. arida sp. n. HT (Tasaryk vill.) (MN023164)</td>
<td>A. kuchinichi sp. n.</td>
<td>A. tarbagata sp. n. (Tasaryk vill.) (MN023162)</td>
</tr>
<tr>
<td>C A T G A A T T G T T T T T T T T C C C C T C T T A A A T C T A C</td>
<td>C C C C T T T AT A A T G T A T</td>
<td>T T C C C C T T A A A A T T A T</td>
</tr>
<tr>
<td>A. arida sp. n. PT (Altyshnyk hill) (MN023165)</td>
<td>A. kuchinichi sp. n.</td>
<td>A. tarbagata sp. n. (Altyshnyk hill) (MN023166)</td>
</tr>
<tr>
<td>C A T G A A T T G T T T T T T T T C C C C T C T T A A A T C T A C</td>
<td>C C C C T T T AT A A T G T A T</td>
<td>T T C C C C T T A A A A T T A T</td>
</tr>
<tr>
<td>A. arida sp. n. PT (Altyshnyk hill) (MN023166)</td>
<td>A. kuchinichi sp. n.</td>
<td>A. tarbagata sp. n. (Altyshnyk hill) (MN023167)</td>
</tr>
<tr>
<td>C A T G A A T T G T T T T T T T T C C C C T C T T A A A T C T A C</td>
<td>C C C C T T T AT A A T G T A T</td>
<td>T T C C C C T T A A A A T T A T</td>
</tr>
<tr>
<td>A. arida sp. n. PT (Bayanmii Mts) (MN023159)</td>
<td>A. kuchinichi sp. n.</td>
<td>A. tarbagata sp. n. (Bayanmii Mts) (MN023158)</td>
</tr>
<tr>
<td>C A T G A A T T G T T T T T T T T C C C C T C T T A A A T C T A C</td>
<td>C C C C T T T AT A A T G T A T</td>
<td>T T C C C C T T A A A A T T A T</td>
</tr>
<tr>
<td>A. arida sp. n. PT (Bayanmii Mts) (MN023157)</td>
<td>A. kuchinichi sp. n.</td>
<td>A. tarbagata sp. n. (Bayanmii Mts) (MN023158)</td>
</tr>
<tr>
<td>C A T G A A T T G T T T T T T T T C C C C T C T T A A A T C T A C</td>
<td>C C C C T T T AT A A T G T A T</td>
<td>T T C C C C T T A A A A T T A T</td>
</tr>
</tbody>
</table>

SIX NEW SPECIES OF ATHAUMASTA KAZAKHSTAN, RUSSIAN ALTAI AND MONGOLIA

TABLE 3. Variable COI 5' characters among *Athaumasta expressa* species-group: bold font character states highlighted in gray are unique to species within the genus; character states highlighted in gray are unique to species within the species-group; italicized character states are intraspecific polymorphisms.
Kazakhstan, Pavlodar Region, Ekibastuz District, rocky steppe & low hills, Shiderty river valley, 230m, 51°39’N 74°38’E. At light. S.V. Titov, M. Ćernila & M. Kučinić leg. (Coll. STP).

Remark. The species erroneously reported for Bayanaul Mts. as *A. expressa* by Titov et al. (2017).

Diagnosis. Forewing length 14.5–15 mm in males (14.5 mm in the holotype) and 14–15.5 mm in females. *Athaumasta kuchinichi* (Figs 31–33) has no external differences from the allopatric sister species *A. expressa* (35–45). The male genitalia of *A. kuchinichi* (Figs 62, 63) differ from those of *A. expressa* (Figs 64–68) by the more massive uncus, the slightly longer valva with a less convex ventral margin, the slightly longer harpe, and the maller cornutus in vesica. The female genitalia of *A. kuchinichi* (Fig. 74) differ from those of *A. expressa* (Fig. 75) by the shorter apophyses anteriores, the shorter and narrower antrum and the smaller corpus bursae.

Molecular data. COI 5’ sequences of three specimens of *A. kuchinichi* from one locality were compared with eleven specimens of *A. expressa* from six localities and *A. tarbagata*, *A. argillacea*, *A. etugen* and *A. arida* as well. The infraspecific variation of COI 5’ sequences of *A. kuchinichi* is 0.00%. The distance between specimens of *A. kuchinichi* and *A. expressa* is 2.02–2.49%; that between *A. kuchinichi* and *A. tarbagata* is 2.49–2.65%; that between *A. kuchinichi* and *A. argillacea* is 2.17%; that between *A. kuchinichi* and *A. etugen* is 4.27%; that between *A. kuchinichi* and *A. arida* is 3.78–4.15%. The COI 5’ sequences of *A. kuchinichi* are characterized by the combination of three character states unique for the genus, 214(G), 433(G) and 631(G), while the COI 5’ sequences of *A. expressa* are characterized by the combination of one character state unique for the genus, 76(G) and two character states unique for the species-group, 22(G) and 283(T). In addition, the COI 5’ sequences of *A. kuchinichi* differ from those of *A. expressa* by the character states 67 (‘G’ in *A. kuchinichi* and ‘A’ in *A. expressa*), 220 (‘T’ in *A. kuchinichi* and ‘C’ in *A. expressa*), 250 (‘T’ in *A. kuchinichi* and ‘C’ in *A. expressa*) and 400 (‘C’ in *A. kuchinichi* and ‘T’ in *A. expressa*) (Table 3).

Distribution. *Athaumasta kuchinichi* is known from the eastern Kazakh Upland (the Bayanaul mountain massif, North East Kazakhstan. The species inhabits rocky outcrops, stony steppe and shrubby slopes and rocks at low altitudes (230–420 m) (Fig. 82).

Etymology. The species is dedicated to Prof. Mladen Kučinić (University of Zagreb, Croatia), a former PhD supervisor of the third author and a collector of two paratypes.

Acknowledgements

We would like to express our gratitude to Dr. László Ronkay (HNHM, Budapest, Hungary) and Mr. Gábor Ronkay (Budapest, Hungary) for supplying pictures of the syntype specimen of *A. expressa*; Dr. Alexey Yu. Matov (ZISP, St. Petersburg, Russia) for supplying pictures of the type specimen of *A. siderigera*; Dr. Vladimir S. Kononenko (Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia) for supplying picture of the *A. pekarskyi* female genitalia; Dr. Roman V. Yakovlev (Altai State University, Barnaul, Russia) for valuable material from West Mongolia and East Kazakhstan; Mr. Matjaž Černila (The Slovenian Museum of Natural History, Ljubljana, Slovenia) for data on specimens from his private collection and supplying picture of the type locality of *A. etugen*; and Mr. Marek Dvořák (Smrčná, Czech Republic) for data on specimens from his private collection. The work of A. Truuverk was supported by institutional research funds (IUT 20-33) from the Estonian Ministry of Education and Research.

References

SIX NEW SPECIES OF ATHAUMASTA KAZAKHSTAN, RUSSIAN ALTAI AND MONGOLIA

