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Abstract: Presence of mollusk assemblages was studied within red coralligenous algae Corallina
officinalis L. along the southern Istrian coast. C. officinalis turfs can be considered a biodiversity
reservoir, as they shelter numerous invertebrate species. The aim of this study was to identify mollusk
species within these settlements using DNA barcoding as a method for detailed identification of
mollusks. Nine locations and 18 localities with algal coverage range above 90% were chosen at four
research areas. From 54 collected samples of C. officinalis turfs, a total of 46 mollusk species were
identified. Molecular methods helped identify 16 gastropod, 14 bivalve and one polyplacophoran
species. COI sequences for two bivalve species (Musculus cf. costulatus (Risso, 1826) and Gregariella
semigranata (Reeve, 1858)) and seven gastropod species (Megastomia winfriedi Peñas & Rolán, 1999,
Eatonina sp. Thiele, 1912, Eatonina cossurae (Calcara, 1841), Crisilla cf. maculata (Monterosato, 1869),
Alvania cf. carinata (da Costa, 1778), Vitreolina antiflexa (Monterosato, 1884) and Odostomia plicata
(Montagu, 1803)) represent new BINs in BOLD database. This study contributes to new findings
related to the high biodiversity of mollusks associated with widespread C. officinalis settlements along
the southern coastal area of Istria.

Keywords: mollusks; gastropods; bivalves; Corallina officinalis; molecular identification; DNA bar-
coding; Adriatic Sea

1. Introduction

Corallina officinalis L. is an encrusting red alga, globally widely distributed in the
temperate zone where it forms dense settlements in the intertidal area. It modifies the
environment through its characteristic structure and is an ideal example of how algae
affect the composition and interaction of organisms within their settlements [1]. It shelters
many macrofaunal groups from wave action, predation, and stress from desiccation in the
intertidal area [2–4]. Based on the mapping results of its habitats along the eastern Adriatic
coast [5], the coastal area of the Adriatic Sea is a suitable location for Corallina’s settlements.
Looking on a smaller scale, along the western Istrian coast, the same continuous widespread
distribution is recorded for Corallina officinalis and Ellisolandia elongata (J.Ellis & Solander)
K.R.Hind & G.W.Saunders, with C. officinalis dominating in areas with no anthropogenic
impact [6].

Changes in the structure and composition of macrofauna found in C. officinalis turfs
have been studied worldwide [2,7–11]. All previous data showed high abundance and
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variety of invertebrates present. The most common taxonomic groups found were poly-
chaetes, crustaceans (amphipods, isopods, tanaidaceans, decapods), pycnogonids and
mollusks, mostly represented by bivalves and gastropods [2,8,12–24]. Notably, most of
the invertebrate specimens recorded in C. officinalis turfs were present as juvenile stages,
making the identification according to morphological features very complex [2,8,12–24].

DNA barcoding [25] can be very useful in identifying specific taxonomic groups or
developmental stages of various invertebrates in situations where species determination
based on morphology is extremely problematic [26,27], as well as in cases where a damaged
organism is present or just a tissue fragment is available [28]. DNA barcoding of marine
organisms has been ongoing around the world for more than a decade to distinguish cryptic
and invasive species as well as to help explain different puzzling life cycles, making it a
convenient tool for assessment and conservation of marine biodiversity [29–32]. However,
it has not yet been used in studies of invertebrate fauna within C. officinalis turfs, and this
paper presents how sequence data of the mitochondrial cox-1 gene (i.e., the barcode region,
mtDNA COI-5P) can be used to confirm or eventually correct morphological identifications
for such problematic specimens. Additionally, this study is one of the first examples
of barcode methodology usage for Croatian marine mollusks. We further highlight the
importance of molecular methods in marine invertebrates identification and supplementing
existing DNA barcode databases such as BOLD database with valid sequence data.

2. Materials and Methods

The research was carried out in the northeastern part of the Adriatic Sea, in the coastal
area of southern Istria and Brijuni National Park. Intertidal area of southern Istria is
dominated by carbonate sedimentary rocks which represents a desirable substrate type
for the settlements of the red alga Corallina officinalis [33]. Sampling was performed in the
summer period of 2018, between June and August, in four different sampling areas named
Pula, Banjole, Premantura and NP Brijuni (Brijuni National Park). Each sampling area
had two or, in case of NP Brijuni, three sampling localities with a total of nine sampling
locations indicated in Figure 1.
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Figure 1. Sampling locations (in italics) within four areas (Pula, Banjole, Premantura, NP Brijuni)
situated in southern Istria.

Prior to sampling of C. officinalis, mapping of its presence along the southern Istrian
coast was performed. The density of the algae settlement was estimated based on the
percentage of algal coverage in the coastal belt about 50 cm wide and the algal coverage for
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all sampling localities chosen was above 90%. Algae sampling was performed quantita-
tively by scraping off with a hammer and chisel within three randomly positioned replicate
quadrats 5 × 5 cm in size. A total of 54 samples were collected and analyzed. In order
to prevent and reduce the loss of mollusks associated with the red algae, sampling was
performed during low tide while the algae were completely out of water. Algae samples
were rinsed in the laboratory using a 500 µm mesh size sieve and each branch was carefully
inspected under a stereomicroscope. Mollusks were sorted, counted and identified to
the lowest possible taxonomic rank based on morphology according to available litera-
ture [34–42]. Morphological identifications were conducted by taxonomists specialized for
marine mollusks, particularly bivalves and gastropods, and specimens were compared
with the marine mollusks collection of the Natural History Museum Rijeka (Croatia). After
identification, each specimen was preserved in 96% ethanol for further processing. The
World Register of Marine Species was used to check all species names [43]. Since identi-
fication according to morphological features was not possible for some specimens, DNA
barcoding was implemented.

Mollusks that were sampled from C. officinalis turfs were only a couple of millimeters
in size, so genomic DNA was extracted from the entire specimen using the QIAamp DNA
Micro Kit, according to the manufacturer’s specifications. Another specimen from the
same sampling location and with the same morphological characteristics was kept as a
paravoucher in the Invertebrates DNA Barcode collection of the Juraj Dobrila University
of Pula. Elution was done in two stages, first with 50 µL elution buffer and second with
100 µL elution buffer. NanoDrop spectrophotometer was used to check the quantity of
extracted DNA.

Full-length COI-5P DNA barcodes were amplified using primer sets LCO1490/
HCO2198 [44] and jgLCO1490/jgHCO2198 [45]. Even though additional primer sets
were initially tested [46,47], all DNA barcodes were successfully amplified with the use
of jgLCO1490/jgHCO2198 primer set with the exception of the specimens identified as
Mytilus galloprovincialis which were amplified with LCO1490/HCO2198 primer set. 20 µL
polymerase chain reactions (PCR) mixture contained 1× DreamTaqTM Reaction Buffer
(containing 2 mM MgCl2, Thermo Scientific, Waltham, Massachusetts, USA), 0.2 mM dNTP
mix (Qiagen), 0.5 µM of each primer, 1.0 U DreamTaq polymerase (Thermo Scientific)
and 3 µL of DNA eluate (10-fold dilution of the second eluate). PCR cycling conditions
comprised an initial denaturation step (95 ◦C for 1 min) followed by 35 cycles of denatu-
ration at 95 ◦C for 45 s, annealing at 48 ◦C for 45 s and elongation at 72 ◦C for 45 s and
a final extension step at 72 ◦C for 7 min. Quality and quantity of PCR products were
checked by electrophoresis on 1% agarose gel stained with ethidium bromide. Enzymatic
cleanup of PCR products was done using Exonuclease I and Antarctic Phosphatase (AnP)
according to the manufacturer’s specifications (New England BioLabs—NEB). Bidirectional
sequencing was performed by Macrogen Inc. sequencing service (Amsterdam, Nether-
lands) using the same amplification primers as for the PCR reaction. Sequences were
edited and curated using the programs BioEdit v.7.0.5.3. [48] and Geneious Prime v.11.0.3
+ 7 (http://www.geneious.com, accessed on 10 January 2021) [49]. EMBOSS Sixpack
(https://www.ebi.ac.uk/Tools/st/emboss_sixpack/, accessed on 25 January 2021) [50]
was used to check the open reading frame. All DNA sequences were submitted to both
the Barcode of Life Data Systems—BOLD [51] and NCBI GenBank [52]. BOLD Process IDs,
GenBank Accession numbers and Inventory numbers are given in Table S1.

BOLD identification tool (http://www.boldsystems.org/index.php/IDS_OpenIdEngine,
accessed on 10 February 2021) and BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi, ac-
cessed on 10 February 2021) were used for initial comparison of obtained DNA sequences
with sequences available in BOLD and NCBI databases and their classification into puta-
tive species or higher taxonomic categories, depending on the obtained genetic distances
(Kimura-2-P, K2P, calculated in MEGA-X v.10.0.5 [53]. A threshold of 3% was considered as
the most commonly used cut-off value for species designations for marine mollusks [54–57],
while for the specimens with lower similarities a tree-based identification in BOLD was

http://www.geneious.com
https://www.ebi.ac.uk/Tools/st/emboss_sixpack/
http://www.boldsystems.org/index.php/IDS_OpenIdEngine
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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performed (Taxon ID NJ tree tool; K2P distances; pairwise deletion) so that the specimen
could be classified into a genus, family or higher taxonomic rank.

Several algorithms were employed to assign specimens to particular species (i.e.,
operational taxonomic units, OTUs). Firstly, Barcode Index Numbers (BINs) were allocated
to specimens using REfined Single Linkage Analysis (RESL) in BOLD [58]. In addition,
species delineation methods (SDMs) bPTP [59] (https://species.h-its.org/ptp/, accessed
on 22 March 2021), ASAP [60] (https://bioinfo.mnhn.fr/abi/public/asap/asapweb.html,
accessed on 22 March 2021) and ABGD [61] (https://bioinfo.mnhn.fr/abi/public/abgd/,
accessed on 22 March 2021) (all under default parameters) were performed to confirm
the initial classification of specimens. Depending on the availability of data, datasets
used in species delineations consisted of conspecific, congeneric and/or confamiliar
sequences withdrawn from BOLD database of public records. MAFFT v.7 [62] (https:
//mafft.cbrc.jp/alignment/server/index.html, accessed on 24 March 2021) was used for
multiple nucleotide sequence alignments (alignment datasets in Supplementary File S2).
As input for bPTP, maximum likelihood (ML) trees were constructed on PhyML 3.0 web-
server [63] (http://www.atgc-montpellier.fr/phyml/, accessed on 25 March 2021), with
automatic model selection by SMS determined through AIC selection criterion [64] (ML
trees in Supplementary File S3).

The final decision for each specimen identification was made by taking into consid-
eration a combination of morphological features, BLAST and BOLD similarity results,
BIN-RESL assignments and the results of SDMs.

3. Results

A total of 14,757 individual mollusks were isolated from C. officinalis turfs collected
along the southern Istrian coast and identified to the species level wherever possible. Iden-
tification according to their morphological features resulted in 46 species, of which 26
gastropods, 19 bivalves and one polyplacophoran (Tables 1 and 2). Detailed information
about species distribution for each investigated sampling location are being prepared
for publication in a separate article. For 69% of specimens subjected to DNA barcoding,
COI-barcode region was successfully amplified. Out of 54 mitochondrial cox-1 sequences
obtained, 24 sequences belonged to gastropods, 29 sequences to bivalves and one sequence
to a polyplacophoran. Certain species were represented with more than one specimen
which was confirmed with additional analyses such as calculation of inter- and intraspe-
cific genetic p-distances of the mitochondrial cytochrome oxidase I gene fragments (Tables
S4–S6) as well as BIN-RESL, bPTP, ASAP and ABGD species delineation methods (SDMs)
(Table 1). As a result of these analyses, the number of species recorded through DNA
barcoding adds up to 31 (16 species for gastropods, 14 species for bivalves and one poly-
placophoran). Several individuals were not successfully barcoded, so the total number of
barcoded species is 33% lower than the number of species recorded based on morphological
features (31 barcoded species compared to 46 morphologically identified species).

https://species.h-its.org/ptp/
https://bioinfo.mnhn.fr/abi/public/asap/asapweb.html
https://bioinfo.mnhn.fr/abi/public/abgd/
https://mafft.cbrc.jp/alignment/server/index.html
https://mafft.cbrc.jp/alignment/server/index.html
http://www.atgc-montpellier.fr/phyml/
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Table 1. Sequenced mollusks and their identification according to morphological features and DNA barcoding. AD: Average
BIN Distance; DNN: Distance to Nearest Neighbor. Specimens classified in OTUs as recovered by species delimitation
methods-A: OTU separate from all other BOLD entries and no additional OTUs with conspecific entries (as entered in
BOLD); B: OTU separate from all other BOLD entries but there are also additional OTUs with conspecific entries; C: OTU
composed of conspecific BOLD entries and there are no additional OTUs with conspecific entries; D: OTU composed of
conspecific BOLD entries and there are additional OTUs with conspecific entries; E: OTU composed of conspecific BOLD
entries and other morpho-species (discordant OTU); n.a.: species delimitation analyses were not performed since there are
no confamiliar sequences in BOLD.

Morphological
Determination
(Family)

BOLD ID/BLAST Hit
(Family; % Similarity)

BIN-RESL
(AD/DNN %) bPTP ABGD ASAP SPECIES Submitted to BOLD

(Family)/BOLD Process ID

GASTROPODA
Bittium reticulatum
(Cerithiidae)

Bittium reticulatum
(Cerithiidae; 95.59)

BOLD:ACV9171
(1.77/2.52) B C B Bittium reticulatum

(Cerithiidae)/CROMI001-19

Eatonina sp. juv.
(Cingulopsidae)

Sassia bassi
(Cymatiidae; 83.28)
Amphissa reticulata
(Columbellidae; 83.26)

BOLD:AEA4980 *
(N/A/16.69) n.a. n.a. n.a.

** Eatonina sp.
(Cingulopsidae)/
CROMI010-19

Eatonina cossurae
(Cingulopsidae)

Crepidula convexa
(Calyptraeidae; 82.07)
Fluminicola sp.
(Hydrobiidae; 82.19)

BOLD:AEA4781 *
(N/A/17.98) n.a. n.a. n.a.

** Eatonina cossurae
(Cingulopsidae)/
CROMI057-19

Vitreolina antiflexa
(Eulimidae)

cf. Crinolamia sp.
(Eulimidae; 80.27)

BOLD:AEA6078 *
(N/A/16.53) A A A

** Vitreolina antiflexa
(Eulimidae)/
CROMI044-19

cf. Episcomitra
cornicula juv.
(Mitridae)

Episcomitra cornicula
(Mitridae; 98.48)

BOLD:ACT4873
(1.8/7.01) C C C

Episcomitra cornicula
(Mitridae)/
CROMI043-19

Muricopsis cristata juv.
(Muricidae)

Ocenebra cf. edwardsii
(Muricidae; 100.00)

BOLD:ACF7365
(0.19/4.98) D D D

Ocenebra cf. edwardsii
(Muricidae)/
CROMI059-19

Patella cf. caerulea juv.
(Patellidae)

Patella caerulea
(Patellidae; 99.56)

BOLD:AAC1245
(0.32/4.74) C C C Patella caerulea (Patellidae)/

CROMI046-19

Megastomia winfriedi
juv. (Pyramidellidae)

Odostomia
(Pyramidellidae; 83.64)
Boonea cincta
(Pyramidellidae; 83.09)

BOLD:AEA7694 *
(0.81/15.12) A A A

** Megastomia winfriedi
(Pyramidellidae)/CROMI008-
19

Megastomia winfriedi
juv. (Pyramidellidae)

Odostomia
(Pyramidellidae; 82.17)

BOLD:AEA7694 *
(0.81/15.12) A A A

** Megastomia winfriedi
(Pyramidellidae)/CROMI061-
19

Odostomia plicata
(Pyramidellidae) (Pyramidellidae; 73.12) BOLD:AEA6873 *

(N/A/25.65) A A A
** Odostomia plicata
(Pyramidellidae)/CROMI048-
19

Rissoella sp. juv.
(Rissoellidae)

Rissoella japonica
(Rissoellidae; 82.01)

BOLD:AEA8121 *
(1.99/17.55) A A A Rissoella sp. (Rissoellidae)/

CROMI009-19

Rissoella sp. juv.
(Rissoellidae)

Rissoella japonica
(Rissoellidae; 82.36)

BOLD:AEA8121 *
(1.99/17.55) A A A Rissoella sp. (Rissoellidae)/

CROMI034-19

cf. Alvania carinata juv.
(Rissoidae)

Cerithium adustum
(Cerithiidae; 84.87)
Cerithium nodulosum
(Cerithiidae; 83.94)

BOLD:AEA4597 *
(N/A/15.57) A A A ** Alvania cf. carinata

(Rissoidae)/CROMI041-19

cf. Alvania discors juv.
(Rissoidae)

Alvania angioyi
(Rissoidae; 86.70)
Cingula trifasciata
(Rissoidae; 86.35)

BOLD:AEA4635 *
(N/A/13.48) A A A Alvania sp. (Rissoidae)/

CROMI045-19

Crisilla maculata
(Rissoidae)

Rissoella japonica
(Rissoellidae; 83.94)

BOLD:AEA8121 *
(1.99/17.55) A A A Rissoella sp. (Rissoellidae)/

CROMI053-19
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Table 1. Cont.

Morphological
Determination
(Family)

BOLD ID/BLAST Hit
(Family; % Similarity)

BIN-RESL
(AD/DNN %) bPTP ABGD ASAP SPECIES Submitted to BOLD

(Family)/BOLD Process ID

cf. Crisilla maculata
(Rissoidae)

Setia turriculata
(Rissoidae; 88.06)

BOLD:AEA7055 *
(0.32/12.34) A A A

** Crisilla cf. maculata
(Rissoidae)/
CROMI038-19

cf. Crisilla maculata
(Rissoidae)

Setia turriculata
(Rissoidae; 87.89)

BOLD:AEA7055 *
(0.32/12.34) A A A

** Crisilla cf. maculata
(Rissoidae)/
CROMI039-19

Rissoidae indet. juv.
(Rissoidae)

Rissoella japonica
(Rissoellidae; 83.20)

BOLD:AEA8121 *
(1.99/17.55) A A A Rissoella sp. (Rissoellidae)/

CROMI060-19

cf. Gibbula ardens juv.
(Trochidae)

Gibbula turbinoides
(Trochidae; 96.47)

BOLD:AEA5856 *
(0.16/3.69) B D D

Gibbula cf. turbinoides
(Trochidae)/
CROMI042-19

cf. Gibbula ardens juv.
(Trochidae)

Steromphala adriatica
(Trochidae; 99.68)

BOLD:ACA1591 #

(0.68/6.41)
E E E

Steromphala adriatica
(Trochidae)/
CROMI040-19

Gibbula turbinoides juv.
(Trochidae)

Gibbula turbinoides
(Trochidae; 96.31)

BOLD:AEA5856 *
(0.16/3.69) B D D

Gibbula cf. turbinoides
(Trochidae)/
CROMI047-19

Sinezona cingulata juv.
(Scissurellidae)

Cochlostoma erika
(Megalomastomatidae;
80.12)
Bellamya robertsoni
(Viviparidae; 80.00)

BOLD:AEA3659 *
(N/A/19.26) A A A Gastropoda

CROMI007-19

Phorcus turbinatus juv.
(Trochidae)

Phorcus turbinatus
(Trochidae; 100.00)

BOLD:ACB7685
(0.7/10.57) C C C Phorcus turbinatus (Trochidae)/

CROMI002-19

Phorcus turbinatus juv.
(Trochidae)

Phorcus turbinatus
(Trochidae; 100.00)

BOLD:ACB7685
(0.7/10.57) C C C Phorcus turbinatus (Trochidae)/

CROMI058-19

BIVALVIA
Arca tetragona juv.
(Arcidae)

Striarca lactea
(Noetiidae; 98.62)
Arca tetragona
(Arcidae; 80.19)

BOLD:ADK1293
(1.14/4.29) D D D Striarca lactea (Noetiidae)/

CROMI011-19

Carditidae indet. juv.
(Carditidae)

Cardita calyculata
(Carditidae; 95.07)

BOLD:AEA7765 *
(0.75/5.07) B C C

Cardita calyculata
(Carditidae)/
CROMI017-19

Carditidae indet. juv.
(Carditidae)

Cardita calyculata
(Carditidae; 95.07)

BOLD:AEA7765 *
(0.75/5.07) B C C

Cardita calyculata
(Carditidae)/
CROMI018-19

Carditidae indet. juv.
(Carditidae)

Cardita calyculata
(Carditidae; 95.07)

BOLD:AEA7765 *
(0.75/5.07) B C C

Cardita calyculata
(Carditidae)/
CROMI019-19

Carditidae indet. juv.
(Carditidae)

Cardita calyculata
(Carditidae; 95.07)

BOLD:AEA7765 *
(0.75/5.07) B C C

Cardita calyculata
(Carditidae)/
CROMI020-19

Carditidae indet. juv.
(Carditidae)

Cardita calyculata
(Carditidae; 95.22)

BOLD:AEA7765 *
(0.75/5.07) B C C

Cardita calyculata
(Carditidae)/
CROMI027-19

Carditidae indet. juv.
(Carditidae)

Cardita calyculata
(Carditidae; 95.38)

BOLD:AEA7765 *
(0.75/5.07) B C C

Cardita calyculata
(Carditidae)/
CROMI035-19

Lasaea adansoni juv.
(Lasaeidae)

Lasaea rubra
(Lasaeidae; 94.83)

BOLD:AEA6973 *
(N/A/5.45) B E E Lasaea cf. rubra (Lasaeidae)/

CROMI006-19

Lucinella divaricata juv.
(Lucinidae)

Lucinoma annulata
(Lucinidae; 76.11)

BOLD:AEA7064 *
(N/A/23.76) A A A Lucinella sp. (Lucinidae)/

CROMI016-19

Gregariella semigranata
juv.
(Mytilidae)

Mytilus edulis
(Mytilidae; 80.59)
Mytilus galloprovincialis
(Mytilidae; 79.56)

BOLD:AEA7588 *
(N/A/21.06) A A A

** Gregariella semigranata
(Mytilidae)/
CROMI062-19
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Table 1. Cont.

Morphological
Determination
(Family)

BOLD ID/BLAST Hit
(Family; % Similarity)

BIN-RESL
(AD/DNN %) bPTP ABGD ASAP SPECIES Submitted to BOLD

(Family)/BOLD Process ID

Lithophaga litophaga
juv.
(Mytilidae)

Lithophaga litophaga
(Mytilidae; 99.82)

BOLD:AAX6397
(0.18/30.32) C C C

Lithophaga litophaga
(Mytilidae)/
CROMI013-19

Musculus costulatus
juv.
(Mytilidae)

Crenella faba
(Mytilidae; 74.96)
Musculus niger, M. discolor
(Mytilidae; 73.00)

BOLD:AEA4861 *
(0/13.53) B B B

** Musculus cf. costulatus
(Mytilidae)/
CROMI003-19

Musculus costulatus
juv.
(Mytilidae)

Musculus costulatus
(Mytilidae; 86.36)

BOLD:AEA4861 *
(0/13.53) B B B

** Musculus cf. costulatus
(Mytilidae)/
CROMI005-19

Musculus sp. juv.
(Mytilidae)

Musculus niger, M. discolor
(Mytilidae; 74.00)

BOLD:AEA6766 *
(N/A/4.62) A A A Musculus sp. (Mytilidae)/

CROMI015-19

Mytilaster minimus juv.
(Mytilidae)

Mytilus galloprovincialis
(Mytilidae; 100.00)

BOLD:AAA2184 #

(1.8/4.39)
D, E D, E D, E

Mytilus galloprovincialis
(Mytilidae)/
CROMI004-19

Mytilaster sp. juv.
(Mytilidae)

Mytilus galloprovincialis
(Mytilidae; 99.17)

BOLD:AAA2184 #

(1.8/4.39)
D, E D, E D, E

Mytilus galloprovincialis
(Mytilidae)/
CROMI052-19

Mytilus
galloprovincialis juv.
(Mytilidae)

Mytilus galloprovincialis
(Mytilidae; 100.00)

BOLD: AAA2184 #

(1.8/4.39)
D, E D, E D, E

Mytilus galloprovincialis
(Mytilidae)/
CROMI056-19

Ostrea sp. juv.
(Chamidae)

Chama gryphoides
(Chamidae; 98.85)

BOLD:AAW6880
(0.16/22.17) C C C Chama gryphoides (Chamidae)/

CROMI014-19

Veneridae indet. 1 juv.
(Veneridae)

Austrovenus stutchburyi
(Veneridae; 82.98)

BOLD:AEA5297 *
(1.09/18.26) A A A Veneridae

CROMI012-19

Veneridae indet. 1 juv.
(Veneridae)

Austrovenus stutchburyi
(Veneridae; 82.86)

BOLD:AEA5297 *
(1.09/18.26) A A A Veneridae

CROMI029-19

Veneridae indet. 1 juv.
(Veneridae)

Austrovenus stutchburyi
(Veneridae; 82.83)

BOLD:AEA5297 *
(1.09/18.26) A A A Veneridae

CROMI030-19

Veneridae indet. 2 juv.
(Veneridae)

Austrovenus stutchburyi
(Veneridae; 82.74)

BOLD:AEA5058 *
(0.44/17.18) A A A Veneridae

CROMI021-19

Veneridae indet. 2 juv.
(Veneridae)

Austrovenus stutchburyi
(Veneridae; 83.74)

BOLD:AEA5058 *
(0.44/17.18) A A A Veneridae

CROMI022-19

Veneridae indet. 2 juv.
(Veneridae)

Austrovenus stutchburyi
(Veneridae; 83.50)

BOLD:AEA5058 *
(0.44/17.18) A A A Veneridae

CROMI023-19

Veneridae indet. 2 juv.
(Veneridae)

Austrovenus stutchburyi
(Veneridae; 83.89)

BOLD:AEA5058 *
(0.44/17.18) A A A Veneridae

CROMI024-19

Veneridae indet. 2 juv.
(Veneridae)

Austrovenus stutchburyi
(Veneridae; 83.89)

BOLD:AEA5058 *
(0.44/17.18) A A A Veneridae

CROMI025-19

Veneridae indet. 2 juv.
(Veneridae)

Austrovenus stutchburyi
(Veneridae; 83.74)

BOLD:AEA5058 *
(0.44/17.18) A A A Veneridae

CROMI026-19

Veneridae indet. 3 juv.
(Veneridae)

Kurtiella bidentata
(Lasaeidae; 85.34)

BOLD:AEA5056 *
(N/A/15.14) A A A Veneridae

CROMI028-19

Veneridae indet. 4 juv.
(Veneridae)

Kellia suborbicularis
(Lasaeidae; 80.26)
Petricola rugosa
(Veneridae; 79.51)

BOLD:AEA5057 *
(N/A/18.97) A A A Veneridae

CROMI055-19

POLYPLACOPHORA
Acanthochitona
fascicularis juv.
(Acanthochitonidae)

Acanthochitona sp.
(Acanthochitonidae;
88.77)

BOLD:AEA6823 *
(N/A/12.1) A A A

Acanthochitona fascicularis
(Acanthochitonidae)/
CROMI037-19

* BIN/OTU new for BOLD database; # discordant BIN (composed of more than one morpho-species or multiple taxa names); ** new
addition for BOLD database.
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Table 2. Taxon list of mollusks isolated from C. officinalis turfs.

GASTROPODA c,e Odostomia plicata a Irus irus
c,e Alvania cf. carinata c Patella caerulea b,e Lasaea cf. rubra

d Alvania sp. 1 c,e Phorcus turbinatus a Lima lima
a Alvania sp. 2 a Pusilllina philippi c,e Lithophaga lithophaga

a,e Ammonicera fischeriana a,e Rissoa splendida d,e Lucinella sp.
c Bittium reticulatum d,e Rissoella sp. c Musculus cf. costulatus
a,e Crisilla beniamina a,e Setia sp. d,e Musculus sp.
a Crisilla innominata d Gastropoda indet. c Mytilus galloprovincialis
a,e Crisilla iunoniae b Steromphala adriatica b,e Striarca lactea

c,e Crisilla cf. maculata c Vitreolina antiflexa d Veneridae indet. 1
c Eatonina cossurae d Veneridae indet. 2

d,e Eatonina sp. BIVALVIA d Veneridae indet. 3
c,e Episcomitra cornicula b Cardita calyculata d Veneridae indet. 4

c,e Gibbula cf. turbinoides b,e Chama gryphoides a Veneridae indet. 5
a,e cf. Gibbula ardens a Flexopecten glaber

c Megastomia winfriedi c,e Gregariella semigranata POLYPLACOPHORA
b Ocenebra cf. edwardsii a,eHiatella rugosa c Acanthochitona fascicularis

(a) identification based on morphology, (b) identification based on DNA barcoding, (c) identification based on morphology and DNA
barcoding, (d) taxa from which DNA barcodes were obtained but no clear assignment to a species was possible, (e) species new compared
to Buršić et al. [21].

Table 1 shows overall results of mollusks identification based on morphological
features compared with the identification results based on similarity of obtained sequences
with the sequences present in both databases (BOLD and GenBank), as well as the results
of BIN-RESL and SDMs.

DNA barcoding confirmed species identification based on morphology for 18 spec-
imens, which makes 33% of the sequences. For eight specimens, making up 15% of the
sequences, the original morphological identification was refuted after comparison with the
sequences available in the database. For these specimens, high similarity with the available
sequences and the results from SDMs were crucial in correcting the original morphological
determination. The gastropods in question were Steromphala adriatica, Gibbula cf. turbinoides
and Ocenebra cf. edwardsii which were originally identified as cf. Gibbula ardens, cf. Gibbula
ardens, and Muricopsis cristata, respectively. One of the specimens originally identified as cf.
Gibbula ardens had 99.68% similarity with the Steromphala adriatica sequence, another one
had 96.46% similarity with Gibbula turbinoides sequence, while a specimen originally identi-
fied as Muricopsis cristata had 100% similarity with Ocenebra cf. edwardsii (Table 2). SDMs
confirmed the assignments for S. adriatica and M. cristata, while for the third specimen
the results of SDMs were not in concordance, and therefore this specimen was designated
as G. cf. turbinoides. Bivalves in question were Lasaea cf. rubra, Mytilus galloprovincialis,
Striarca lactea and Chama gryphoides. For the specimens originally identified as Mytilaster
sp. and Mytilaster minimus it was later concluded that those specimens are in fact Mytilus
galloprovincialis since their sequences had a 99% similarity with the M. galloprovincialis
sequence, further confirmed by SDMs. The species Striarca lacteal and Chama gryphoides
were initially identified as Arca tetragona and Ostrea sp., respectively. A specimen originally
identified as Arca tetragona had 98.62% similarity with the Striarca lactea sequence, while a
specimen originally identified as Ostrea sp. had 99.85% similarity with the Chama gryphoides
sequence, also confirmed by SDMs. A specimen initially morphologically identified as
Lasaea adansoni was after analyses corrected to be Lasaea cf. rubra (Table 2).

For 52% of the specimens, DNA barcoding did not serve in identification to the species
level due to the lack of available sequences in the BOLD and GenBank databases. In cases
where morphological identification was also not reliable, the specimens were identified to
the family or genus level with the help of a tree-based identification in the BOLD database.
On the other hand, in cases of reliable morphological identification, newly sequenced
specimens were submitted to the BOLD database as new species. In our study, there were
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nine such species, i.e., seven gastropod species and two bivalve species that represented
new additions to the BOLD database. Gastropods were Megastomia winfriedi, Eatonina sp.,
Eatonina cossurae, Crisilla cf. maculata, Alvania cf. carinata, Vitreolina antiflexa and Odostomia
plicata, and bivalves were Musculus cf. costulatus and Gregariella semigranata (Figure 2,
Table 2).
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carinata, (d) Crisilla cf. maculata, (e) Vitreolina antiflexa, (f) Odostomia plicata, (g) Megastomia winfriedi,
(h) Musculus cf. costulatus, (i) Gregariella semigranata.

In addition, the calculation of intraspecific and interspecific uncorrected pairwise
distances (p-distances) was performed for the specimens that were assigned to same
species and/or same genera or families, in order to check the existence of the 3% similarity
threshold, which is usually taken as the cut-off value for species separation in mollusks.
Along with that, the existence of the barcoding gap was also checked. For gastropods,
intraspecific p-distances calculation was conducted for five species which were represented
with more than one individual. These are Crisilla cf. maculata, Phorcus turbinatus, Gibbula
cf. turbinoides, Megastomia winfriedi and Rissoella sp. Table S4 shows that the maximum
recorded intraspecific p-distance value was 2.32% for the species Rissoella sp., also within
the 3% threshold.

Interspecific genetic p-distances for gastropods ranged from 14% to 35%. Certain
families were represented by several species, so p-distance values within the family, and
in some cases within the genus, could also be recorded. For the family Rissoidae, which
was represented with the genera Crisilla and Alvania, p-distance interspecific values ranged
from 18% to 24%. For the family Cingulopsidae and its only genus Eatonina, p-distance
value was 24%. Interspecific p-distance values within the family Trochidae (represented by
the genera Phorcus, Gibbula and Steromphala) ranged from 14% to 16%, while for the family
Pyramidellidae (represented by the genera Megastomia and Odostomia) this value was 30%.

For bivalves intraspecific p-distances calculation was performed for five species which
were represented with more than one specimen. Species in question were Musculus cf.
costulatus, Mytilus galloprovincialis, two species from the Veneridae family and Cardita
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calyculata. Tables S5 and S6 show that the 3% threshold for intraspecific genetic distance
was also met, with a maximum recorded intraspecific p-distance value of 2.72% for Mytilus
galloprovincialis.

Interspecific genetic p-distances for bivalves ranged from 18% to 49%. Mytilidae
and Veneridae were represented by several specimens, so interspecific p-distance values
within these families could also be calculated. For Mytilidae, which was represented with
the genera Musculus, Mytilus, Gregariella and Lithophaga, values ranged from 21% to 40%.
Interspecific p-distance values for four species within the family Veneridae ranged from 18%
to 36%.

The obtained ranges of intra- and interspecific p-distances between the analyzed
specimens of gastropods and bivalves do not overlap, thus corroborating the existence of
the barcoding gap and further supporting species identification.

As a summary of all taxa recorded within our study, a list is provided in Table 2 with
detailed information on the type of identification used (i.e., based on morphology and/or
DNA barcoding). It is noteworthy to mention that twenty-two species were newly recorded
for northern Adriatic Corallina turfs.

4. Discussion

Although molecular methods for specimen identification existed before the use of
DNA barcoding, the method as such offers several major advantages. The most important
advantage DNA barcoding brings is a form of standardization which allows comparison
and verification of data between researchers [65]. However, the use of DNA barcoding
was not intended as a method that will replace the very important and necessary taxon-
omy but as an addition that will complement it, which has shown to be helpful in many
cases [30]. DNA barcoding has proven to be a useful tool in identifying mollusks. Given
that in our study juvenile mollusks of a maximum body size up to only a few millimeters
were predominant, determination according to morphological features was a significant
challenge in most cases. Mollusks were often documented as a problematic group for DNA
amplification [66], with various success rates of COI region amplification (e.g., 43% for
museum collection samples [67], 52% for mollusks collected in Canada [66] and 59% for
samples of marine mollusks collected in the North Sea [29]. Therefore, the recorded success
of amplified COI-barcode regions for 69% of specimens subjected to DNA barcoding in our
study may be considered a satisfactory result. There are several suggested explanations for
such variable success rates of DNA amplification for mollusks. Variations in mucopolysac-
charide levels can often reduce the success of PCR amplification [68]. Polysaccharides
present in tissue and mucus are considered a major problem because they co-precipitate
with the DNA molecule and inhibit DNA polymerase activity [67]. This is most probably
the main reason why the results of our study indicate better amplification when a 10-fold
dilution of the second DNA eluate was used in the PCR reaction. In addition, living
gastropods tend to retract and seal their shell with the operculum, which prevents the
penetration of alcohol into the tissue, preventing proper fixation and conservation of the
tissue, and consequently causing the degradation of genomic DNA which can hinder the
amplification of the barcoding fragment. This is most likely explanation for the lack of
sample amplification for some specimens in our study. Galindo et al. [69] suggested that
a microwave oven can be used when extracting tissue from gastropod shells, since short
exposure to the wavelength used by these devices facilitates tissue extraction, while at the
same time the quality and quantity of the obtained DNA is not impaired. Another benefit
of this method is that the intact gastropod shell can be preserved which is necessary for
correct taxonomic identification and for proper storage as a barcode voucher.

The traditional approach for validating putative species using the DNA barcoding
method is based on comparison of intra- and interspecific genetic distances [25,70]. There
is much discussion in literature about which threshold is most appropriate, however
data vary depending on the taxonomic group and species being investigated. Sweeney
et al. [71] suggest that this range should be 2–4% for invertebrates, while the 3% threshold
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is frequently mentioned for marine mollusks [54–57]. Besides this, the existence of a clear
barcoding gap, which is defined as ten times the ratio between the average interspecific
and intraspecific distances [72], must also be taken into account. Another approach based
on genetic distances relies on the absence of overlap between the values of the lowest
interspecies variation and the highest intraspecific divergence [73]. However, many recent
studies report great variation of intra- vs. interspecific distances in molluscan taxa [74–78],
indicating that any a priori set threshold must be taken with caution and checked by
alternative approaches for molecular identification.

A range of single-locus species delimitation methods are available which differ from
each other in a number of aspects and which all take into account more than just the a priori
set sequence distance thresholds, but instead employ various algorithms to identify mini-
mal phylogenetic units (OTUs) within the phylogenetic species concept [79–85]. Molecular
species delimitations have also been recently used in various studies of marine mollusks,
mostly as part of integrative taxonomic approaches to species identification (e.g., [55–57],
to mention just a few).

In our study, several methods were employed to classify questionable specimens
as a particular species. For the calculation of COI genetic distances, the aforementioned
threshold of 3% intraspecific variability was taken into account, as well as the barcoding gap.
The average recorded intraspecific variability for gastropods was 1.25% (range 0–2.32%) and
for bivalves 0.7% (range 0–2.72%), while the average interspecific variability for gastropods
was 28% (range 14–35%) and for bivalves 38% (range 18–49%). The obtained intra- and
interspecific p-distance values are comparable to range of values recorded in previous
studies of mollusks where distances from 0% to 4.1% were obtained for intraspecific
variability and from 4.3% to 34.4% for genetic divergence between different species [86–88].
Furthermore, our results confirm the existence of the barcoding gap, and show that there is
no intra-/interspecies distance overlap for both gastropods and bivalves, even though this
finding must be interpreted carefully since only few individuals per species were sampled.

Besides the obtained values of intraspecific variability and interspecific divergence,
species delimitation methods were employed that allowed us the assignment of question-
able specimens to particular species. This was precisely the case for Mytilus galloprovincialis,
which was mostly represented by juvenile forms with only a few adult specimens. Juve-
niles are morphologically very similar to Mytilaster minimus, which had a controversial
taxonomic history with many synonyms and subspecies variations [89]. However, based
on evaluation of genetic distances and the results of SDMs, it was concluded that all newly
sequenced specimens belong to the species Mytilus galloprovincialis. In addition to this
species, a similar dilemma also occurred for specimens of Musculus costulatus and speci-
mens belonging to family Veneridae, whose morphological features were not sufficiently
informative. Integration of employed molecular methods ultimately allowed their classifi-
cation to particular OTUs with a significant level of confidence, although the specimens of
Veneridae could not be identified to species level due to lack of data in databases.

Correct specimen identification using the DNA barcoding method requires a com-
prehensive database containing sequences of the same species that is being identified.
The lack of reference sequences was precisely the reason why certain specimens from our
study were not identified to the species level. In particular, this applies to one gastropod
species that was uploaded to BOLD simply as Gastropoda (BOLD Process ID CROMI007-19
and GenBank Accession number MT920137). According to morphology, these specimens
were identified as Sinezona cingulata, which is not currently present in the BOLD database
and GenBank. However, since the similarity of our specimen’s sequence with the only
congeneric species present in GenBank (S. confusa [90]) was below 65%, we did not make a
new entry for BOLD database under the name S. cingulata. However, in some cases it was
possible to identify the specimen up to the genus or family level (as in the case of Veneridae
specimens). Yet another category are several specimens for which incongruent results of
species delimitation methods were obtained, but nevertheless we were confident in our
identification according to morphological features. This applies for example to Cardita
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calyculata and Bittium reticulatum. When various developmental stages were present, such
as in the case of Cardita calyculata, we were able to identify the specimens that already
begun having morphological features crucial for identification (Figure 3). Juvenile mol-
lusks are often morphologically very different from adult individuals, so DNA barcoding
is increasingly used by taxonomists as a tool to avoid confusion and misidentification of
specimens. Molecular identification of juvenile individuals can help in understanding the
life cycle of individual species [26] and in the early detection of invasive species [91].
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Figure 3. Different developmental stages of Cardita calyculata with morphological features that vary
for individuals with only a few millimeters difference in size. BOLD Process IDs and GenBank
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In cases of taxa which most probably represent species complexes or cryptic species,
which are quite common in mollusks [75,76,87,89], species delimitation methods and BIN-
RESL can efficiently point to these taxonomic problems. Several instances of such complex
taxa have also been noticed in this study, through appearance of the same species names in
two (or even several) clearly separate BINs. e.g., Ocenebra edwardsi, Gibbula turbinoides and
Striarca lactaea appear in two separate BINs each, while the most striking example is Mytilus
galloprovinciallis which is present in as much as 21 BINs in BOLD database. Another quite
often encountered issue in BOLD is related to cases of (most probably) erroneous initial
morphological determinations which remain unnoticed and which result in discordant
BINs in BOLD database, i.e., BINs composed of specimens with different species names. In
our work we noticed two cases of such discordance, namely BINs containing our specimens
of S. adriatica and M. galloprovincialis.

Existing database sequences are therefore a key part of DNA barcoding for specimen
identification. A reliable database of verified sequences is necessary to compare newly
obtained sequences and possibly identify questionable individuals [92]. Without reference
sequences with vouchers whose authenticity and accuracy of taxonomic identification
have been confirmed by qualified expert taxonomists, it is not possible to exploit the full
potential of DNA barcoding. However, data entry into the BOLD database far exceeds
the speed of their verification, so this verification process is the bottleneck of the entire
initiative [92]. Nevertheless, this situation is improving daily since many researchers are
contributing to the BOLD database.

A comparison of mollusk species isolated from C. officinalis turfs with previously
recorded species conducted throughout the world confirms this algal settlement as a
biodiversity reservoir for marine mollusks. Most commonly recorded genera for gastropods
are Alvania, Eatonina, Odostomia, Rissoa, Rissoella and the family Rissoidae in general, and for
bivalves Hiatella, Lasaea, Musculus and Mytilus [2,12–21,23,93–95] which were all recorded
in considerable numbers in our study as well. Even though C. officinalis turfs have been
investigated for years, there are still many unknowns regarding its settlements, which is
further substantiated by the fact that we identified one gastropod genus (Episcomitra) and
three bivalve genera (Gregariella, Lucinella, Striarca) that were not documented in previous
studies. Even when compared with the Buršić et al. [21] study, which was conducted in
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the same research areas as our study, we identified 14 new gastropod species and 8 new
bivalve species in the C. officinalis settlements in the northern Adriatic (Table 2). Regarding
the biodiversity of marine invertebrates in the Adriatic Sea, our research also contributed
to the BOLD database, given that nine newly sequenced mollusk species were added to
the database. However, having in mind that DNA barcoding relies on a single molecular
marker and that sequences and taxon samplings in public databases are far from dense
or suitable enough for species identification in many taxa, additional investigations with
larger sample size are needed in order to gain a full picture of biodiversity in this realm.

5. Conclusions

Our results of 46 identified mollusk species confirm C. officinalis settlements as im-
portant areas for coastal biodiversity. Based on the results of this study and given that
mollusks isolated within the C. officinalis turfs were predominantly specimens that were
very difficult to determine only by morphological features, DNA barcoding greatly helped
as an additional tool in specimen identification. In the case where it was not possible to
identify a specimen down to the species level or when it was not possible to state with
certainty whether particular specimens were the same or different species, DNA barcoding
proved to be the most appropriate option in resolving these dilemmas. The combination of
classical taxonomic methods and DNA barcoding as specimen identification is therefore
recommended in resolving potential doubts and difficulties encountered by taxonomists as
successfully as possible.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/d13050196/s1, Table S1: Specimens used in analysis with assigned species name, BOLD Process
ID number, GenBank Accession number and Inventory numbers in the Invertebrates DNA Barcode
collection at the Juraj Dobrila University of Pula; Supplementary S2: Alignment datasets; Supplemen-
tary S3: Maximum likelihood (ML) trees; Table S4: Inter- and intraspecific genetic p-distances of the
mitochondrial cytochrome oxidase I (cox-1) gene fragments recorded for gastropod species (numbers
in bold show intraspecific p-distance values); Table S5: Inter- and intraspecific genetic p-distances
of the mitochondrial cytochrome oxidase I (cox-1) gene fragments recorded for bivalve species M.
costulatus, M. galloprovincialis and C. calyculata (numbers in bold show intraspecific p-distance values);
Table S6: Inter- and intraspecific genetic p-distances of the mitochondrial cytochrome oxidase I (cox-1)
gene fragments recorded for Veneridae (numbers in bold show intraspecific p-distance values).
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