Poll

No polls currently selected on this page!

Repository

Repository is empty

News - Archive

Return

Results 0 - 0 of 0
Page 1 of 0
Results per page: 
No news!

Introduction to Geophysical Fluid Dynamics

Code: 66356
ECTS: 4.0
Lecturers in charge: izv. prof. dr. sc. Ivana Herceg Bulić
Lecturers: dr. sc. Iva Međugorac - Exercises
Take exam: Studomat
Load:

1. komponenta

Lecture typeTotal
Lectures 30
Exercises 15
* Load is given in academic hour (1 academic hour = 45 minutes)
Description:
Atmosphere-ocean system: Solar radiation. Temperature distribution. Greenhouse effect. Convection. Variability of radiative forcing and consequent horizontal gradients. Atmosphere-sea interaction. Characteristics of fluid in rest-Equation of state. Thermodynamic variables. Water vapour in atmosphere. Phase transitions. Fluid parcels in equilibrium (pressure gradient force, gravity), hydrostatic equation. Vertical structure of atmosphere and sea. Static stability, Brunt-Väisälä.frequency, potential temperature, potential density. Vertical profiles and their graphical presentation. Fluid in motion-Fluid parcel. Continuity equation. Equation of conservation of scalar quantity (humidity, salinity). Heat equation. Equation of motion, Coriolis force, viscosity effects (molecular, turbulent). Scales of motion. Boundary conditions (solid boundary, material boundary, internal boundary).

LEARNING OUTCOMES:
Students will have the knowledge and skills to describe and analyze the characteristics and structure of the atmosphere and ocean, understand and explain the basic properties of the dry and moist air and interpret associated processes, interpret, calculate and analyze atmospheric static stability, understand basic principles of geophysical fluid dynamics, solve equations that govern a fluid and discuss their solutions, derive and explain the consequences of the Earth rotation.
Literature:
  1. Gill, A., 1982: Atmosphere-Ocean Dynamics. Academic Press, Orlando. 662 str.
  2. Cushman-Roisin, B., 1994: Introduction to Geophysical Fluid Dynamics, Prentice Hall, London, 320 str.
  3. Kundu, P. K., 1990: Fluid mechanics. Academic Press, San Diego, 638 str.
5. semester
Mandatory course - Regular study - Geophysics
Consultations schedule: