UNUSUAL WINTER ZOOPLANKTON BLOOM IN THE OPEN SOUTHERN ADRIATIC SEA

¹LUČIĆ Davor, ²LJUBEŠIĆ Zrinka, ² BABIC Ivana, ² BOSAK, Sunčica, ³CETINIC Ivona, ⁴VILIBIC Ivica, ⁴ MIHANOVIC Hrvoje, ¹ HURE Marijana, ¹ NJIRE Jakica, ⁴ LUČIĆ Petra, ² **KRUZIC** Petar

This work was fully supported by Croatian Science Foundation under the project BIOTA UIP-2013-11-6433.

¹Institute for Marine and Coastal Research1University of Dubrovnik, Dubrovnik, Croatia ²Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia ³Ocean Ecology Laboratory, NASA Goddard Space Flight Center Code 616, Greenbelt, USA ⁴Institute for Oceanography and Fisheries, 21000 Split, Croatia

INTRODUCTION

The Southern Adriatic (SA) is oligitrophic basin and the deepest part of the Adriatic Sea to about 1200 m (Fig. 1). This paper focuses on the unusually high microzooplankton abundance and an unexpected change in community composition in the SA during the winter of 2015. It addresses the link between zooplankton density and primary production using winter hydrographic, optical, and water-mass observations.

METHODS

Data collection was between 28 February and 2 March 2015 in the South Adriatic Sea along transects P and M (Fig.ure 1).

MODIS Aqua ocean color products accessed (NASA Goddard Space Flight Center, 2016) extended the spatio-temporal scale of at-sea observations in the study area. An SBE25 CTD probe (SEA-Bird Electronics Inc) was used for collection of basic water-quality data .

Microzooplankton was collected by vertical hauls of opening-closing Nansen nets (0.57 m diameter, 53 - µm mesh configuration). Sample depths (as allowed by each station's maximum depth) were: 0 - 50, 50 - 100, 100 - 150, 100 - 300, 300 - 600, and 600 - 1000 m. Microzooplankton was analyzed with an inverted microscope at 100 x and 400 x.

RESULTS

Satellite images in the days following the cruise revealed surface Chl patchiness (Figure 2).

stations over two investigated transects.

Figure 1. Map of investigated area with noted

Temperature, salinity, sigma-t, and dissolved oxygen profiles (data not shown) revealed a layered water column over the northern section of the South Adriatic (Figure 3). Warmer-than-usual temperatures (14.5 - 15.0°C) and lower salinity (38.70 -38.75) characterized most of the surface and upper intermediate layers (Figure 3).

Microzooplankton abundance was high over the entire study area (Figure 4). Mean densities exceeded 10 000 ind. m⁻³ at stations shallower than 300 m. The maximum, 25 094 ind. m⁻³, was on 28 February within the 50 - 100 m layer at Station P300. Station P1000 had markedly high abundance - 14 760 ind. m⁻³ within the same layer.

Protozoans were abundant from surface to 100 m depth (Figure 5). Tintinnids constituted 68% of total protozoans. The deep protozoan community had higher densities of typically surface species, some of which were found exclusively in the mesopelagic and deeper layers (Stenosemella nivalis, Tintinnopsis campanula).

Copepod developmental stages made up 75% of total microzooplankton abundance; of these, 48% were nauplii. Abundance decreased gradually from the surface, but high values were found between 50 and 100 m at P300 (Figure 6) for metazoa (21 082 ind. m^{-3}), nauplii (13 734 ind. m^{-3}), and copepodites (6505 ind. m^{-3}).

Figure 2. Maps of Chl concentrations retrieved from MODIS Aqua17 February 2015; 18 February 2015; 19 February 2015; 20 February 2015; 03 March 2015; and 06 March 2015

Figure 7. Box-Wiskers plot of the abundance of protozoan shown by depth layers atall investigated stations..

No. ind. m⁻³ Figure 6. Box-Wiskers plot of the total copepods developmental stages abundance shown by depth layers at all investigated stations.

DISCUSSION and CONCLUSIONS

Prior to this study, the highest zooplankton concentrations measured in the open South Adriatic were in spring or early summer. During the winter of 2015, all developmental stages were found as deep as 300 m at densities substantially higher than in earlier SAP investigations that used the same sampling methods (Table 1).

The observed zooplankton maximum could have been ascribed to (i) warmer-thanusual surface and intermediate ocean temperatures. (ii) a high excess in precipitation and widened surface below 400 m depth, coastal area to open ng, MODIS Chl data the eastern shore of ity profiles (Figure 2)

Figure 4. Spatial distribution of total microzooplankton abundance along the investigated profile.

Table 1. Comparison of maximal microzooplankton winter/spring abundance noted in this investigation with former records (ind. m⁻³) at open waters of southern Adriatic Sea.

Data source	Planktonic groups	February/March	April-May	General maximum	
	Tintinnids	1807			
This investigations	Nauplii	13 734			
	Calanoid copepodites	3277			
	Tintinnids	133	3778	33 574 (June)	
Kršinić (1998)	Nauplii	7936	7820	10 800 (September)	
	Calanoid copepodites	1408	1600	2432 (July)	
	Tintinnids		>50	1450 (August)	
Kršinić and Grbec (2002)	Nauplii		13 625	13 625 (May)	
	Calanoid copepodites		819	819 (May)	
Kršinić and Grbec (2006)	Tintinnids	185	3778	3914 (October)	
	Tintinnids	2304			
Batistić et al. (2012)	Nauplii	5267			
	Calanoid copepodites	810			

communities is affected to varying degrees by climatic processes.