Reduction of *Acinetobacter baumannii* biofilm formation by natural zeolite

Svjetlana Dekić¹, Jasna Hrenović¹, Darko Tibiljaš¹, Marin Ganjto², Snježana Kazazić³, Tomislav Ivanković¹

¹Faculty of Science, University of Zagreb, Croatia
²Zagreb Wastewater - Management and Operation Ltd., Zagreb, Croatia
³Ruđer Bošković Institute, Zagreb, Croatia

₇ᵗʰ Slovenian-Serbian-Croatian Symposium on Zeolites, Ljubljana, Slovenia, 25ᵗʰ - 27ᵗʰ May 2017
Acinetobacter baumannii

- Gram negative coccobacillus
- Emerging human pathogen isolated mainly from hospital setting
- Pneumonia, bloodstream infections, urinary tract infections, wound infections in immunosuppressed patients
- Environmental isolates related to clinical isolates were found in soils and waters under the influence of human solid and liquid waste (Seine River, Sava River, acid paleosol from Croatia)
- Survives adverse environmental conditions for several months
Acinetobacter baumannii

- Antibiotic resistance and virulence factors contribute to *A. baumannii* success as a pathogen
- Surface motility on solid/semi-solid media
- Biofilm formation on various surfaces
 - respiratory devices, intravenous devices, catheters, furniture, linen
 - human epithelial cells

Bacteria on human alveolar epithelial cells
Acinetobacter baumannii

- **Biofilm** - an assemblage of cells enclosed in an extracellular matrix formed on different interfaces (solid-liquid, air-liquid)
- **Pellicle** - highly organised form of biofilm formed at the air-liquid interface
Experimental

- Wastewater treatment plant in Zagreb
- Combined sewage of domestic, hospital, industry and storm wastewater
- Samples of influent, efluent, fresh activated and digested sludge were analysed
Experimental

- Isolation on commercial agar CHROMagar Acinetobacter at 42°C/48h
- Identification with Matrix assisted laser desorption ionisation with time of flight (MALDI TOF) on ribosomal proteins
Experimental

- Antibiotic resistance profile (Vitek2 system, EUCAST and CLSI criteria for clinical isolates)
- Hydrophobicity (BATH assay)- affinity of bacteria for organic hydrocarbon
- Biofilm formation (Crystal violet assay)
 - $\text{OD}_{550} < 0.3$ poor
 - $\text{OD}_{550} 0.3-1.0$ intermediate
 - $\text{OD}_{550} > 1.0$ strong
- Pellicle formation
 - No pellicle (0)
 - Poor (1)
 - Strong (2)
Natural zeolite (NZ)

- Quarries at Donje Jesenje, Croatia
- Clinoptilolite (50-55%), celadonite, plagioclase feldspars and opal-CT (10-15% each), analcime and quartz in traces
- <0.122mm
- dry NZ was sterilized by autoclaving
- Experiments with 1 and 10 wt % NZ
24 isolates recovered
14 MDR, 10 sensitive to 12 antibiotics tested
9/24 isolates hydrophobic
Majority of isolates intermediate biofilm and poor pellicle formers
Antibiotic sensitive isolates more hydrophobic and stronger biofilm and pellicle formers

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Antibiotic resistance</th>
<th>Hydrophobicity (%)</th>
<th>Pellicle formation</th>
<th>Biofilm formation (OD<sub>550</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN31</td>
<td>sensitive</td>
<td>97</td>
<td>1</td>
<td>1.024</td>
</tr>
<tr>
<td>IN34</td>
<td>MDR</td>
<td>1</td>
<td>1</td>
<td>1.006</td>
</tr>
<tr>
<td>IN36</td>
<td>sensitive</td>
<td>2</td>
<td>1</td>
<td>1.225</td>
</tr>
<tr>
<td>IN41</td>
<td>MDR</td>
<td>0</td>
<td>0</td>
<td>0.138</td>
</tr>
<tr>
<td>IN47</td>
<td>MDR</td>
<td>0</td>
<td>1</td>
<td>0.745</td>
</tr>
<tr>
<td>IN58</td>
<td>sensitive</td>
<td>93</td>
<td>2</td>
<td>2.497</td>
</tr>
<tr>
<td>EF7</td>
<td>MDR</td>
<td>0</td>
<td>1</td>
<td>1.098</td>
</tr>
<tr>
<td>EF8</td>
<td>MDR</td>
<td>0</td>
<td>1</td>
<td>1.026</td>
</tr>
<tr>
<td>EF11</td>
<td>sensitive</td>
<td>80</td>
<td>2</td>
<td>1.180</td>
</tr>
<tr>
<td>EF13</td>
<td>MDR</td>
<td>0</td>
<td>1</td>
<td>0.468</td>
</tr>
<tr>
<td>EF22</td>
<td>MDR</td>
<td>0</td>
<td>1</td>
<td>0.483</td>
</tr>
<tr>
<td>EF23</td>
<td>MDR</td>
<td>0</td>
<td>1</td>
<td>0.766</td>
</tr>
<tr>
<td>S5</td>
<td>MDR</td>
<td>3</td>
<td>1</td>
<td>0.971</td>
</tr>
<tr>
<td>S6</td>
<td>sensitive</td>
<td>78</td>
<td>1</td>
<td>0.868</td>
</tr>
<tr>
<td>S9</td>
<td>sensitive</td>
<td>8</td>
<td>2</td>
<td>1.274</td>
</tr>
<tr>
<td>S10</td>
<td>MDR</td>
<td>2</td>
<td>1</td>
<td>0.364</td>
</tr>
<tr>
<td>S11</td>
<td>MDR</td>
<td>0</td>
<td>1</td>
<td>1.005</td>
</tr>
<tr>
<td>S15</td>
<td>sensitive</td>
<td>79</td>
<td>1</td>
<td>0.998</td>
</tr>
<tr>
<td>D10</td>
<td>sensitive</td>
<td>0</td>
<td>1</td>
<td>0.723</td>
</tr>
<tr>
<td>D11</td>
<td>MDR</td>
<td>46</td>
<td>1</td>
<td>0.402</td>
</tr>
<tr>
<td>D12</td>
<td>MDR</td>
<td>49</td>
<td>1</td>
<td>0.217</td>
</tr>
<tr>
<td>D13</td>
<td>sensitive</td>
<td>0</td>
<td>1</td>
<td>0.267</td>
</tr>
<tr>
<td>D16</td>
<td>sensitive</td>
<td>67</td>
<td>1</td>
<td>0.891</td>
</tr>
<tr>
<td>D17</td>
<td>MDR</td>
<td>1</td>
<td>2</td>
<td>1.244</td>
</tr>
</tbody>
</table>

IN- influent, EF- effluent, S - fresh sludge, D - digested sludge
MDR (multi-drug resistant)- resistance to three or more classes of antibiotics

<table>
<thead>
<tr>
<th></th>
<th>Hydrophobicity</th>
<th>Biofilm</th>
<th>Pellicle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrophobicity</td>
<td>1.000</td>
<td>r=0.425</td>
<td>p=0.003</td>
</tr>
<tr>
<td>Biofilm</td>
<td>1.000</td>
<td>r=0.682</td>
<td>p=0.000</td>
</tr>
<tr>
<td>Pellicle</td>
<td>1.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Biofilm formation

OD values 0.3 and 1.0

0% NZ
1% NZ
10% NZ
Pellicle formation

1 wt % NZ

Pellicle of the same consistency

Control

Lower consistency pellicle

10 wt % NZ
Cells of *Acinetobacter baumannii* immobilized onto NZ particles
Conclusions

- Cell surface hydrophobicity is an important feature which determines biofilm and pellicle formation of *A. baumannii*.
- Isolates sensitive to antibiotics form stronger biofilm and pellicles than MDR isolates.
- NZ successfully reduces biofilm and pellicle formation due to the immobilization of bacteria onto the NZ particles.
Conclusions

- NZ is a promising material for the reduction of *A. baumannii* virulence factors.
- NZ could find application in control of this emerging pathogen in the form of cleaning product where *A. baumannii* could be captured by NZ and safely removed from the contaminated environment.
This work has been supported by the Croatian Science Foundation under the project title „Natural habitat of clinically important *Acinetobacter baumannii*“ (project no. IP-2014-09-5656).

THANK YOU!