Introduction

From 2010 onwards (Girlich et al. 2010), continuous reports on the occurrence of *Acinetobacter baumannii* outside hospital environment can be found. Multi-drug resistant (MDR) *A. baumannii* were found in untreated as well as in biologically or chemically treated hospital and municipal wastewaters (Ferreira et al. 2011; Zhang et al. 2013, Seruga et al. 2017). However, there is no evidence about the fate of this emerging hospital pathogen in the wastewater treatment plants with sewage sludge treatment process.

The aim of this study was to screen the sewage sludge after its stabilization by anaerobic mesophilic digestion for the presence of *A. baumannii*.

Materials and methods

The sampling of digested sewage was done during 10 months (September 2015-June 2016) at the municipal wastewater treatment plant of the City of Zagreb, Croatia. The isolation of *A. baumannii* was performed on CHROMagar Acinetobacter supplemented with 15 mg/L of cefsoludin sodium salt hydrate after incubation at 42°C/48h (Seruga et al. 2017).

Identification of presumptive colonies was performed by routine bacteriological techniques and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) on cell extracts (Sousa et al. 2014). The antibiotic susceptibility profile was determined according to MICS values obtained by Vitek2 system and E-test for colistin.

Results

On 9 sampling occasions 17 isolates of *A. baumannii* were recovered from digested sewage with MALDI-TOF MS score values ranging from 2.026-2.288. 3/17 isolates were sensitive to all 12 antibiotics tested while 14 MDR isolates shared the resistance to carbapenems and fluoroquinolones but sensitivity to colistin.

Technology of anaerobic sludge digestion was performed at 36°C, neutral pH and digestion time of 21-36 days. The ability of isolates to survive or multiply in anaerobic atmosphere was checked in controlled laboratory conditions. Isolates were able to survive on Nutrient agar in anaerocult A system during 30 days, after which multiplied normally in aerobic conditions. However, isolates were not able to multiply directly in anaerocult A.

Conclusion

The study confirmed the ability of *A. baumannii* to survive the technological process of anaerobic mesophilic digestion of sewage sludge. The finding confirms the need of proper management and disposal of sewage sludge generated at wastewater treatment plants in order to prevent the spread of MDR *A. baumannii* in nature. Moreover, it indicates the anaerobic environments as possible ecological niches that enable the survival of this emerging human pathogen.

Acknowledgements

This research was supported by the Croatian Science Foundation (grant no. P1-0294-96056) and in a part by the University of Zagreb (grant no. 202751).

References

