
6.2. Funkcija izvodnica momenata



Glavne poruke

• FI momenata ima slična svojstva kao i FI vjerojatnosti, ali nije
ograničena na slučajne varijable s vrijednostima u N0.

• Ipak, FI momenata nije definirana za varijable koje imaju
"pretežak rep". Primjerice, čim je E[|X|k] = ∞ za neki k, X
nema FI momenata.

• FI momenata se općenito koriste za dobivanje ograda na
vjerojatnosti oblika P(X > u) za velike u > 0, ali time se nećemo
baviti.



Def. 6.12 (FI momenata)

Neka je X (bilo kakva) slučajna varijabla. Ako postoji t0 > 0 za koji
vrijedi

E[etX ] < ∞ , ∀|t| ⩽ t0 , (6.9)

funkcija M : [−t0, t0] → [0, ∞) definirana sa

M(t) := E[etX ] , (6.10)

zove se funkcija izvodnica momenata slučajne varijable X.

Napomena.
• U nastavku ćemo često pisati MX := M kako bi naglasili da se

radi o FI momenata za slučajnu varijablu X.

• Ako ne vrijedi (6.9), FI momenata nije definirana, te se rezulati
koje ćemo izvesti ne mogu koristiti za takve slučajne varijable.



Napomena 6.13 (o uvjetu (6.9))

• Ako je t > 0 (odnosno t < 0), uvjet E[etX ] < ∞ će vrijediti ako
vjerojatnosti P(X > u) (odnosno P(X < −u)) nisu prevelike za
velike u > 0.

• Gornji uvjet je ekvivalentan je uvjetu

E[et0|X|] < ∞ . (6.11)

• To slijedi jer za sve |t| ⩽ t0 vrijedi

etX ⩽ e|tX| ⩽ et0|X| ⩽ max{et0X , e−t0X} ⩽ et0X + e−t0X ,

pa specijalno i

E[etX ] ⩽ E[et0|X|] ⩽ E[et0X ] + E[e−t0X ] .



Teorem 6.14 (Svojstva FI momenata)

Pretpostavimo da postoji t0 > 0 takav da vrijedi (6.9).
(a) Za sve k ∈ N0 je E

[
|X|k

]
< ∞, pa specijalno postoji k-ti

moment od X definiran s µk := E[Xk].

(b) Za sve |t| ⩽ t0 vrijedi1

MX(t) =
∞∑

k=0

µk

k! tk .

(c) Za sve k ∈ N0 vrijedi M (k)(0) = µk.

1Zato se MX zove funkcija izvodnica momenata.



Dokaz.

Dokaz je baziran na jednakosti ex =
∑∞

n=0
xn

n! , x ∈ R.

(a)
[
E[|X|k] < ∞, ∀k

]
et0|X| =

∞∑
n=0

tn
0 |X|n

n! ⩾
tk
0

k! |X|k , ∀k ∈ N0 . (6.12)

Monotonost očekivanja povlači da je

tk
0

k!E
[
|X|k

]
⩽ E[et0|X|]

(6.11)
< ∞ , ∀k ∈ N0 .

Tvrdnja sada slijedi budući da je t0 > 0.



Dokaz.

(b)
[
MX(t) =

∑∞
k=0

µk

k! tk, ∀|t| ⩽ t0

]
Za |t| ⩽ t0,

MX(t) = E[etX ] = E

[ ∞∑
n=0

tnXn

n!

]

=
∞∑

n=0
E

[
tnXn

n!

]
=

∞∑
n=0

µn

n! tn .

Napomena.* Zamjena E i
∑∞

n=0 u trećoj jednakosti opravdana je
verzijom tzv. Fubinijevog teorema (vidi bilješke). Dovoljan uvjet
ovdje je zadovoljen samo za |t| ⩽ t0 jer je samo tada

E

[ ∞∑
n=0

|t|n|X|n

n!

]
= E[e|t|·|X|] ⩽ E[et0·|X|]

(6.11)
< ∞



Dokaz.

(c)
[
M (k)(0) = µk

]
DZ – slijedi jer

MX(t) =
∞∑

k=0

µk

k! tk

deriviramo "član po član".



Primjer 6.15 (Exp(λ) razdioba)

• Za X ∼ Exp(λ), tj. fX(t) = λe−λt, t > 0, vrijedi

MX(t) = [raspis na ploči] = λ

λ − t
, t < λ := t0 .

[Formalno bi trebali uzeti t0 := λ − ϵ > 0 neki mali ϵ tako da vrijedi
(6.9).]

• Specijalno, iz M ′
X(t) = λ

(λ−t)2 slijedi da je

E[X] = M ′
X(0) = 1

λ
.

Daljnjim deriviranjem možemo dobiti i E[Xk] za k = 2, 3, . . . , ali
pogledajmo puno elegantniji pristup.



Primjer 6.15 (Exp(λ) razdioba – momenti)

• Ideja: Znamo da je MX(t) =
∑∞

n=0
tn

n!E[Xn], za t < t0, pa ako
nađemo niz (an)n⩾0 za koji je MX(t) =

∑∞
n=0

tn

n! an (za t-ove na
proizvoljno maloj okolini nule), nužno je E[Xn] = an, ∀n ⩾ 0.

• Ako je E ∼ Exp(1) i |t| < 1,

ME(t) = [t < 1 = λ] = λ

λ − t

∣∣∣
λ=1

= 1
1 − t

= [|t| < 1] =
∞∑

n=0
tn =

∞∑
n=0

tn

n! · n! .

⇝ E[En] = n!, za sve n ⩾ 0.

• Općenito, budući da je X := E
λ ∼ Exp(λ),

E[Xn] = E[En]
λn

= n!
λn

, ∀n ∈ N0 .



Primjer 6.16 (N(µ, σ2))

Za Z ∼ N(0, 1) imamo

MZ(t) = E[etZ ] =
∫ ∞

−∞

1√
2π

e− z2
2 · etzdz

= [± t2

2 ] =
∫ ∞

−∞

1√
2π

e− 1
2 (z2−2tz+t2)+ t2

2 dz

= e
t2
2

∫ ∞

−∞

1√
2π

e− (z−t)2
2︸ ︷︷ ︸

=fN(t,1)(z)

dz = e
t2
2 , ∀t ∈ R .

to jest

MN(0,1)(t) = e
t2
2 , t ∈ R (6.15)



Primjer 6.16 (N(µ, σ2))

Za X ∼ N(µ, σ2),

MX(t) = E[etX ] = [X ∼ σZ + µ] = E[etσZ+tµ] = etµE[etσZ ]

= etµMZ(tσ) = [MZ(t) = e
t2
2 ] = eµt+ σ2

2 t2
, ∀t ∈ R . (6.16)



Primjer 6.17 (FI ne postoji uvijek!)

• Ako za slučajnu varijablu X postoji k ⩾ 0 t.d. je E[|X|k] = ∞, tj. X
nema k-ti moment, po prethodnom teoremu ne postoji t0 > 0 t.d.
vrijedi (6.9), tj. ne postoji MX .

• Intuitivno, to su varijable koje imaju "pretežak rep" u smislu da su
vjerojatnosti P(|X| > u) (tj. P(X > u) ili P(X < −u)) za velike
u > 0 relativno velike.

• npr. to je slučaj za X ∼ Pareto(α) za proizvoljan α > 0 (X ⩾ 1 te
P(X > u) = u−α, u ⩾ 1) – u Primjeru 5.28 smo pokazali da je
E[Xα] = ∞, pa je i E[Xk] = ∞ za sve k ⩾ α.

Napomena*.
• Ako za X ne postoji MX , možemo koristiti tzv. karakterističnu

funkciju t 7→ E[eitX ] ∈ C koja uvijek postoji.

• Karakteristična funkcija ima slična svojstva kao i FI momenata.

• Ipak, ako postoji MX možemo dobiti eksponencijalne ocjene na
vjerojatnosti oblika P(X > a); vidi vježbe (Chernoffova ograda),
te tzv. teoriju velikih devijacija (engl. large deviations).



Ključna svojstva (isto kao kod FI vjerojatnosti)

Tm. 6.18.(DZ) Ako su slučajne varijable X i Y nezavisne te postoji
t0 > 0 tako da su MX i MY dobro definirane na [−t0, t0], MX+Y je
također dobro definirana na [−t0, t0] te vrijedi

MX+Y (t) = MX(t)MY (t) , |t| ⩽ t0 . (6.17)

Nap. 6.19 (FI momenata jedinstveno određuje distribuciju) Može se
pokazati da ako vrijedi MX = MY na nekom otvorenom intervalu oko
0, tada slučajne varijable X i Y imaju istu distribuciju (bez dokaza).

Pr. 6.20 (zbroj nezavisnih normalnih je opet normalna)(DZ)
Koristeći (6.17) i prethodnu napomenu lako se pokaže da za
X ∼ N(µ1, σ2

1) i Y ∼ N(µ2, σ2
2) nezavisne vrijedi

X + Y ∼ N(µ1 + µ2, σ2
1 + σ2

2) .



Pr. 6.21 (Crowdsourcing)

• Pretpostavimo da su Xi ∼ N(µ, σ2
i ), i = 1, . . . , n nezavisne, za neko

zajedničko očekivanje µ ∈ R, te (moguće različite) varijance
σ1, . . . , σn > 0.

• Cilj: na temelju realizacija X1 = x1, . . . , Xn = xn, želimo procijeniti
µ.

• Motivacija: Imamo proizvod čiju (nepoznatu) kvalitetu želimo
procijeniti. Parametar µ predstavlja kvalitetu proizvoda, a Xi

predstavlja ocjenu koji i-ti korisnik daje tom proizvodu – veći σi

odgovara korisniku s manjom ekspertizom.



Pr. 6.21 (Crowdsourcing, n = 3)



Pr. 6.21 (Crowdsourcing)

• Osnovni procjenitelj koji možemo koristiti je Xn = 1
n

∑n
i=1 Xi, a

njegovu "grešku" možemo definirati kao

err(Xn) := E
[
|Xn − µ|

]
.

• Po prethodnom primjeru znamo da Sn :=
∑n

i=1 Xi ima normalnu
razdiobu, pa nadalje slijedi da i Xn − µ = 1

n · Sn + µ ima normalnu
razdiobu, i to s parametrima

E[Xn − µ] = [E[Xi] = µ, ∀i] = 1
n

· nµ − µ = 0 ,

Var(Xn − µ) = Var(Xn) = [nezavisnost] =
∑n

i=1 σ2
i

n2 =: c2
n .

• Specijalno, ako je Z ∼ N(0, 1), imamo cn|Z| ∼ |Xn − µ|, pa odmah
slijedi

err(Xn) = cnE
[
|Z|

]
=

√
2
π

·
√∑n

i=1 σ2
i

n



Pr. 6.21 (Crowdsourcing)

err(Xn) =
√

2
π

·
√∑n

i=1 σ2
i

n

• Ako je σi = σ > 0, ∀i, onda je err(Xn) =
√

2
π · σ√

n
→ 0, kada n → ∞.

• Na primjer, ako dopustimo da varijance σi ovise o n, tj. σi = σ
(n)
i , te

ako za neki ϵ > 0 vrijedi

max
i=1,...,n

σ
(n)
i = n1+ϵ , ∀n ⩾ 1 ,

tj. barem jedna varijanca je dovoljno velika imamo

err(Xn) ⩾
√

2
π

n1+ϵ

n
=

√
2
π

nϵ −→ +∞ , n → ∞ .



Pr. 6.21 (Crowdsourcing)

Za alternativan procjenitelj kada su σi poznate vidjeti vježbe. Što ako
su σi nepoznate?



Primjer 6.22 (Gama razdioba)
Kažemo da slučajna varijabla X ima gama razdiobu s parametrima
α, λ > 0 (oznaka X ∼ Gama(α, λ)) ako je neprekidna s gustoćom

f(t) = λα

Γ(α) tα−1e−λt , t > 0 ,

uz f(t) = 0 za t ⩽ 0, gdje je Γ(α) :=
∫ ∞

0 yα−1e−ydy tzv. gama
funkcija (vrijedi Γ(n) = (n − 1)! za sve n ∈ N).



Primjer 6.22 (Gama razdioba) – svojstva

fGama(α,λ)(t) = c · tα−1e−λt , t > 0

• očito je Gama(1, λ) = Exp(λ);

• X ∼ Gama(α, 1) povlači da je X
λ ∼ Gama(α, λ), za sve λ > 0

(DZ);

• X ∼ Gama(α, λ) povlači MX(t) =
(

λ
λ−t

)α

, za t < λ (DZ).

• koristi se u Bayesovskoj statistici kao tzv. apriorna distribucija.



Prop. 6.23 (zbroj nezavisnih Exp(λ))

Ako su X1, . . . , Xn njd takve da je Xi ∼ Exp(λ), vrijedi

Tn := X1 + · · · + Xn ∼ Gama(n, λ) .

[U Poissonovom procesu s intenzitetom λ > 0, gornji Tn je upravo
vrijeme kada se dogodio n-ti događaj.]

Dokaz.

MTn(t) = [X1, . . . , Xn njd] = (MX1(t))n =
(

λ

λ − t

)n

= MGama(n,λ)(t), t < λ .


