Repository

Repository is empty

Poll

No polls currently selected on this page!

Quantum chemistry

Code: 44041
ECTS: 5.0
Lecturers in charge: prof. dr. sc. Nađa Došlić - Lectures
prof. dr. sc. Tomica Hrenar - Lectures
Lecturers: Mihael Eraković - Seminar
Take exam: Studomat
Load:

1. komponenta

Lecture typeTotal
Lectures 30
Seminar 15
* Load is given in academic hour (1 academic hour = 45 minutes)
Description:
Problems of classical theory: stability and dimension of atoms and molecules, fotoelectric efect, black body radiation, spectrum of hydrogen atom, Bohr model (primitive quantum theory). Quantum theory: wave nature of particles, de Brogli relation, Schrodinger equation, particle spin, axioms of wave mechanics, consequences of those axioms, tunel effect Simple models: Particle in a box, separation of variables, harmonic oscilator, hydrogen atom. Many electron atoms: atom spectrum, selection rules. Molecules: Born-Oppenheimer approximation, LCAO (MO) method, hybridisation method, Huckel method, alternant and nonalternant systems, PPP method, many determinant wave functions, configuration interaction (CI), VB method, comparison of VB and MO, ligand field theory. Approximate methods: perturbation expansion, the use of symmetry.
LEARNING OUTCOMES:
1. Explain problems of classical physics and conceptual differences of classical and quantum mechanics.
2. Explain the concept of wavefunction and specify and explain postulates of quantum mechanics.
3. Apply postulates, write out Schrödinger equations and explain exact solutions for following systems: particle in one dimensional box, free particle, and quantum mechanical harmonic oscillator.
4. Write out Schrödinger equation for hydrogen and hydrogen-like atoms, explain methods for solving equation and solutions, explain effects in manyelectron atoms.
5. Explain and apply variational principle and perturbation methods in solving quantum chemical problems.
6. Explain methods for solving Schrödinger equation for ground and excited states of helium atom.
7. Write out Schrödinger equation for molecules and explain Born-Oppenheimer approximation.
8. Review Hartree-Fock self-consistent field method for atoms.
Literature:
  1. 1. P. W. Atkins & R. S. Friedman, Molecular Quantum Mechanics, 3. izd. Oxford Univ. Press, Oxford 1997.
    2. I. Supek, Teorijska fizika i struktura materije, poglavlje V: Molekularna kvantna mehanika, Zagreb, 1964
  2. W. J. Hehre, Practical Strategies for Electronic StructureCalculations, Wavefunctions Inc. 1995.
  3. P. W. Atkins & R. S. Friedman, Molecular Quantum Mechanics, 3. izd. Oxford Univ. Press, Oxford 1997.
1. semester
Izborni predmeti izvan odabranih grana - Mandatory smjer - Analytical and inorganic chemistry
Izborni predmeti izvan odabranih grana - Mandatory smjer - Analytical and organic chemistry
Mandatory course - Mandatory smjer - Analytical and physical chemistry
Izborni predmeti izvan odabranih grana - Mandatory smjer - Analytical chemistry and biochemistry
Izborni predmeti izvan odabranih grana - Mandatory smjer - Biochemistry and organic chemistry
Mandatory course - Mandatory smjer - Biochemistry and physical chemistry
Izborni predmeti izvan odabranih grana - Mandatory smjer - Inorganic and organic chemistry
Mandatory course - Mandatory smjer - Inorganic and physical chemistry
Izborni predmeti izvan odabranih grana - Mandatory smjer - Inorganic chemistry and biochemistry
Mandatory course - Mandatory smjer - Physical and organic chemistry

3. semester
Izborni predmeti izvan odabranih grana - Mandatory smjer - Analytical and inorganic chemistry
Izborni predmeti izvan odabranih grana - Mandatory smjer - Analytical and organic chemistry
Izborni predmeti izvan odabranih grana - Mandatory smjer - Analytical chemistry and biochemistry
Izborni predmeti izvan odabranih grana - Mandatory smjer - Biochemistry and organic chemistry
Izborni predmeti izvan odabranih grana - Mandatory smjer - Inorganic and organic chemistry
Izborni predmeti izvan odabranih grana - Mandatory smjer - Inorganic chemistry and biochemistry
Consultations schedule: