Load:

1. komponenta
Lecture type  Total 
Lectures 
30 
Exercises 
30 
* Load is given in academic hour (1 academic hour = 45 minutes)

Description:

COURSE GOALS: Acquire knowledge and understanding of the fundamentals of electronics (FE). Acquire operational knowledge of methods used to solve FE problems. Acquire an overview of the use of FE in modern areas of physics and technology.
LEARNING OUTCOMES AT THE LEVEL OF THE PROGRAMME:
1. KNOWLEDGE AND UNDERSTANDING
1.1. demonstrate a thorough knowledge and understanding of the fundamental laws of classical and modern physics;
1.10. integrate physics and informatics content knowledge with knowledge of pedagogy, psychology, didactics and teaching methods courses;
2. APPLYING KNOWLEDGE AND UNDERSTANDING
2.1. identify and describe important aspects of a particular physical phenomenon or problem;
2.2. recognize and follow the logic of arguments, evaluate the adequacy of arguments and construct well supported arguments;
2.3. use mathematical methods to solve standard physics problems;
3.9. create a learning environment that encourages active engagement in learning and promotes continuing development of pupils' skills and knowledge;
2.10. plan and design appropriate teaching lessons and learning activities based on curriculum goals and principles of interactive enquirybased teaching;
2.11. plan and design efficient and appropriate assessment strategies and methods to evaluate and ensure the continuous development of pupils
3. MAKING JUDGMENTS
3.4. accept responsibilities in planning and managing teaching duties;
3.5. demonstrate professional integrity and ethical behaviour in work with pupils and colleagues
4. COMMUNICATION SKILLS
4.1. communicate effectively with pupils and colleagues;
4.3. present their own research results at educational or scientific meetings;
5. LEARNING SKILLS
5.1. search for and use professional literature as well as any other sources of relevant information;
5.2. remain informed of new developments and methods in physics, informatics and education;
5.3. develop a personal sense of responsibility for their professional advancement and development;
LEARNING OUTCOMES SPECIFIC FOR THE COURSE:
Upon passing the course on FE, the student will be able to:
* demonstrate knowledge of Cathode ray tube
* demonstrate knowledge of Semiconductors and Semiconductor diode
* demonstrate knowledge of Transistors.
* formulate Methods of circuit analysis.
* demonstrate knowledge of Single stage amplifier and follower
* demonstrate knowledge of Multistage and feedback amplifiers
* demonstrate knowledge of Differential amplifier
* demonstrate knowledge of Operational amplifier.
* demonstrate knowledge of Basic logic gates.
* demonstrate knowledge of Boolean algebra and logic circuits
* demonstrate knowledge of Fundamentals of optoelectronics
* demonstrate knowledge of Photodiode and light emitting diode.
* demonstrate knowledge of Laser diode.
COURSE DESCRIPTION:
Lectures:
1. Cathode ray tube.
2. Semiconductors and Semiconductor diode.
3. Transistors.
4. Methods of circuit analysis.
5. Single stage amplifier and follower.
6. Multistage and feedback amplifiers.
7. Differential amplifier.
8. Operational amplifier.
9. Basic logic gates.
10. Boolean algebra and logic circuits.
11. Fundamentals of optoelectronics.
12. Photodiode and light emitting diode.
13. Laser diode.
Exercises follow lectures by content:
Supplementary material to lectures: solving problems in electronics.
DemoLab:
Supplementary material  practical examples:
Week Content
2. CRT Osci.
4. Diode and transistor.
11. Application of PC s in physics demonstrations (using transducers and sensors).
14. Optoelectronic elements.
REQUIREMENTS FOR STUDENTS:
Students must attend 90% of the lectures and exercises.
GRADING AND ASSESSING THE WORK OF STUDENTS:
Two voluntary written exams during semester (2 x two problems to solve), or one final written exam (four problems to solve).
Contributions to the final grade: 40% of the grade is carried by the results of the written exams; the oral exam carries 60% of the grade

Literature:

 C.L.Hemenway, R.W.Henry, M.Caulton, Physical Electronics, John Wiley & Sons Inc.,1967.
P. Biljanović, Elektronički sklopovi, Školska knjiga, Zagreb 1999.
 J.Millman, A.Grabel, Microelectronics, McGrawHill, New York 1988.

Prerequisit for:

Enrollment
:
Attended
:
Quantum Physics
Attended
:
Statistical Physics
