Poll

No polls currently selected on this page!

Repository

Repository is empty

Physical chemistry 1

Code: 41009
ECTS: 8.0
Lecturers in charge: prof. dr. sc. Tomica Hrenar
Lecturers: prof. dr. sc. Tomica Hrenar - Seminar
Take exam: Studomat
Load:

1. komponenta

Lecture typeTotal
Lectures 60
Seminar 45
* Load is given in academic hour (1 academic hour = 45 minutes)
Description:
Introduction to quantum mechanics: introduction to quantum theory, electromagnetic radiation, blackbody radiation, quantization of energy, photoelectric effect, historical models of the atom, Bohr's model of the atom, de Broglie's hypothesis, Heisenberg's uncertainty principle.
Quantum mechanics: postulates of quantum mechanics, measurement and interpretation of quantum mechanics, Schrödinger's equation, Pauli's principle, exactly solvable problems: particle in a one- and three-dimensional box, free particle, particle in a rectangular well, particle in a ring, non-interacting particles, rigid rotor, harmonic oscillator, other model systems.
Quantum chemistry: hydrogen atom, atomic orbital, spin, variational theorem, multi-electron atoms, Hartree-Fock self-consistent field method, configurational interaction, electronic configuration, electronic structure of molecules, Born-Oppenheimer approximation, valence bond theory, molecular-orbital theory, ligand field theory, quantum chemical calculations.
Molecular spectroscopy: interaction of radiation and matter, infrared and Raman spectroscopy, Einstein's quantum theory of radiation, selection rules, rotational spectra in the rigid and non-rigid rotor approximation, vibrational spectra in the harmonic and anharmonic approximation, introduction to electron spectroscopy, Franck-Condon principle, Jablonski diagram, NMR, EPR, energies of nuclear spin states, Larmor frequency, chemical shift, NMR spectrum for the two-proton system AX.
Introduction to thermodynamics: phenomenological thermodynamics, zeroth, first, second and third laws of thermodynamics, statistical thermodynamics, fundamental postulate of statistical mechanics, quantum Fermi-Dirac statistics, quantum Bose-Einstein statistics, Maxwell-Boltzmann statistics, Boltzmann distribution, partition function, equation of state of the system, ideal and real gas, kinetic theory of gases, equipartition theorem, distribution of molecular velocities.

LEARNING OUTCOMES:
1. Explain breakdown of classical physics: photoelectrical effect, atomic spectra, and black body radiation.
2. Specify and explain postulates of quantum mechanics.
3. Apply postulates of quantum mechanics, write out Schrödinger equations, explain and compare solutions for following systems: particle in one dimensional box, free particle, particle in rectangular well, particle in three dimensional box, quantum mechanical harmonic oscillator.
4. Write out Schrödinger equation for hydrogen atom and hydrogenlike atoms. Explain and compare solutions and effects in many electron atoms.
5. Write out Schrödinger equation for molecules, explain Born-Oppenheimer approximation and variational principle. Define molecular orbitals, hybridization and ligand field theory.
6. Explain absorption, stimulated and spontaneous emission as well as scattering of electromagnetic radiation.
7. Explain and associate phenomena in rotational, vibrational, electronic, EPR and NMR spectra with structure and properties of molecules.
8. Explain properties of ideal and real gases, equations of states and kinetic theory of gases, Boltzmann low and partition functions.
9. Specify and explain first and the second law of thermodynamics.
10. Define and explain internal energy, heat, work, enthalpy, extent of reaction, Gibbs free energy and entropy.
11. Present adequate skills in technical writing and oral presentations.
Literature:
  1. 1. P. W. Atkins, J. de Paula, Elements of physical chemistry, 4. izd., Oxford University Press, Oxford 2005.
    2. P. W. Atkins, Atkins' Physical chemistry, 8. izd., Oxford University Press, Oxford, 2006.
    3. R.J. Silbey, R. A. Alberty, M. G. Bawendi, Physical chemistry, 4. izd., Wiley, New York 2004.
    4. T. Engel, Ph. Reid, Physical Chemistry, Pearson Education, San Francisco 2006.
    5. J. Herak, Uvod u kemijsku fiziku, Školska knjiga, Zagreb 2001.
    6. T. Cvitaš, Fizikalna kemija, rkp. u pripremi i dijelom dostupan u SKK i kao ftp download.
    7. Vl. Simeon, Termodinamika, rkp. u pripremi i dijelom dostupan u SKK.
    8. T. Cvitaš, I. Planinić, N. Kallay, Rješavanje računskih zadataka u kemiji, I i II dio, Hrvatsko kemijsko društvo, Zagreb 2008.
  2. P. Atkins, Physical Chemistry, 5. izd., Oxford Univ. Press, Oxford 1986. {Može se rabiti 3. izd. ili bilo koje kasnije izdanje}
  3. R. S. Berry, S. A. Rice & J. Ross, Physical Chemistry, 2. izd., Oxford University Press, New York ? Oxford 2000.
  4. T. Cvitaš, Fizikalna kemija, rkp. {primjerak za studentsku uporabu nalazi se u CKB [c/o Branka Maravić]}
  5. Vl. Simeon, Termodinamika, Školska knjiga, Zagreb, 1980.
  6. Vl. Simeon, Kemijska termodinamika, 2. izd. [st80], rkp. {primjerak za studentsku uporabu nalazi se u CKB [c/o Branka Maravić]}
  7. Vl. Simeon i V. Tomišić, Kem. Ind. 45 (1996) 61
Prerequisit for:
Enrollment :
Passed : Mathematics 1
Attended : Mathematics 2
Attended : Physics 2

Examination :
Passed : Mathematics 2
Passed : Physics 2
3. semester
Mandatory course - Regular study - Chemistry
Consultations schedule: