Poll

No polls currently selected on this page!

Repository

Repository is empty

Mathematical modelling of search engines

Code: 61533
ECTS: 5.0
Lecturers in charge: prof. dr. sc. Zlatko Drmač - Lectures
Lecturers: prof. dr. sc. Zlatko Drmač - Exercises
Load:

1. komponenta

Lecture typeTotal
Lectures 30
Exercises 15
* Load is given in academic hour (1 academic hour = 45 minutes)
Description:
COURSE AIMS AND OBJECTIVES: To specify and implement some algorithms for intelligent data search and data analysis.

COURSE DESCRIPTION AND SYLLABUS:
1. [1] Motivation. Examples of intelligent data analysis. Search engines.
2. [5] Vector model of data. Noise reduction. Best lover rank approximation. SVD and latent semantic indexing. Methods and applications (Internet, protein structure).
3. [4] Grouping algorithms. Spectral partition of weighted graphs. Laplace matrix and Fiedler vector. Probabilistic approaches.
4. [4] Page ranking. Hubs and authorities. Dead ends and spider traps. Markov models. Practical methods.
Literature:
  1. R. B. Yates, B. R. Neto: Modern Information Retrieval
  2. S. Mitra, T. Acharya: Data Mining
  3. M. W. Berry, Z. Drmač, E. R. Jessup: Using linear algebra for information retrieval
  4. C. H. Q. Ding, H. Zha, X. He, P. Husbands, H. D. Simon: Link analysis: Hubs and Authorities on the World Wide Web
  5. M. Bianchini, M. Gori, F, Scarselli: Inside PageRank
Prerequisit for:
Enrollment :
Passed : Introduction to data mining
3. semester
Izborni predmet 3, 4, 5, 6 - Mandatory studij - Computer Science and Mathematics

4. semester
Izborni predmet 3, 4, 5, 6 - Mandatory studij - Computer Science and Mathematics
Consultations schedule:

Content

Link to the course web page: http://www.pmf.unizg.hr/math/predmet/mmp_b