PROJEKT FlexibleCrystals
IP-2019-04-1242
Trajanje / Duration:
15.01.2020. - 14.07.2024.
Financiranje / Funding:
HRVATSKA ZAKLADA ZA ZNANOST
VODITELJ PROJEKTA / PRINCIPAL INVESTIGATOR:
Prof. dr. sc. Marijana Đaković
INSTITUCIJE / INSTITUTIONS:
Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet / University of Science, Faculty of Science
Sveučilište u Splitu, Kemijsko-tehnološki fakultet / University of Split, Faculty of Chemistry and Technology
Kansas State Univesity
NAZIV PROJEKTA / PROJECT TITLE:
Od oblika do funkcije: Fleksibilni kristalni materijali s kontroliranim mehaničkim odzivom
From form to function: Mechanically flexible crystalline materials with controllable responses
SAŽETAK / ABSTRACT:
Mehanička savitljivost, iako osnovno svojstvo većine živih sustava, rijetko se pojavljuje kod kristalnih materijala. Kristalne krutine općenito su nesavitljive i lako pucaju i/ili se lome pri izlaganju mehaničkom podražaju, osobito ako su im građevne jedinke povezane međumolekulskim interakcijama usporedive jakosti u svim smjerovima. Međutim, nekoliko nedavno objavljenih znanstvenih radova opisuje savitljive organske kristale i svega nekoliko primjera 0-D metaloorganskih kristalnih krutina koje mogu pokazivati savitljivost pod utjecajem mehaničke sile. Prvi rad o mehanički savitljivim kristalnim 1-D koordinacijskim polimerima objavljen je 2018. godine. U tom radu smo pokazali da se stupanj elastičnosti može kontrolirati uvođenjem malih ali kontroliranih strukturnih promjena, a takvo nešto dosad još nije bilo poznato.
S ciljem potpunog razumijevanja i objašnjenja uvjeta potrebnih za prilagodljivost i ugodivu savitljivost kristalnih koordinacijskih polimera pod utjecajem vanjskog mehaničkog podražaja, predlažemo kombinaciju teorije i eksperimenta za sustavno istraživanje specifičnih strukturnih značajki i međumolekulskih interakcija te njihovog utjecaja na mehanička svojstva kristalnih koordinacijskih polimera. Glavni je cilj ovog interdisciplinarnog istraživanja na granici kemije i znanosti o materijalima definirati postojane i prenosive smjernice za dizajn kristalnih koordinacijskih polimera s a priori određenom savitljivošću, na temelju ‘bottom-up’ pristupa. Takvi materijali imali bi najbolja svojstva meke i kristaline tvari – ugodivu pokretljivost i očuvanu uređenost dalekog dosega. Time bi pružili nove i jedinstvene mogućnosti znanosti o materijalima i inženjerstvu, jer navedeni koordinacijski polimeri omogućuju dosad nezamisliv uvid u novu generaciju pametnih materijala s ugodivom funkcijom.
-----------
Mechanical flexibility, an essential characteristic of most living systems, is rare among crystalline materials. Crystalline solids are in general brittle, and they tend to crack and/or break upon application of mechanical stress, especially if they are held together by intermolecular bonds that are of comparable strength in all directions. Recently, however, there have been several reports of flexible organic crystals, and a few cases of 0-D metal-organic crystalline solids that can respond flexibly to an applied mechanical force. The very first paper on crystalline 1-D coordination polymers with mechanical flexibility was published in 2018, wherein we also demonstrated that the extent of elasticity could be controlled by introducing small and controllable structural modifications, something that had not been accomplished before.
In order to fully understand and explain which conditions need to be met for crystalline coordination polymers to be adaptive and tunably flexible in response to external mechanical stimuli, we propose a combination of theory and experiment to systematically explore how specific structural features and intermolecular interactions impart mechanical properties in crystalline coordination polymers. The overarching goal of this interdisciplinary research effort at the interface of chemistry and materials science is to deliver robust and transferable guidelines for bottom-up design of coordination polymers with a priori determined flexibility. Such materials would combine the best features of both soft and crystalline matter, by presenting tunable mobility whilst preserving a long-range order, and subsequently offer unique opportunities for materials science and engineering as they contain coordination polymers at their core, which can provide unprecedented access to a new generation of smart materials with tunable functionality.
PROJEKTNI TIM / PROJECT TEAM:
PMF: Ivana, Biljan, Mladen Borovina, Ivan Kodrin, Ozana Mišura,
Mateja Pisačić, Željka Soldin, Marko Pužar
KTF: Boris-Marko Kukovec
KSU: Viraj de Silva, Christer B. Aakeröy
Znanstveni radovi / publications:
1. M. Pisačić, I. Biljan, I. Kodrin, N. Popov, Ž. Soldin, M. Đaković, Elucidating the origins of a range of diverse flexible responses in crystalline coordination polymers, Chem. Mater. 2021, 33, 10, 3660–3668, doi: 10.1021/acs.chemmater.1c00539
- Rad je zbog visoke ocjene recenzenata istaknut na naslovnici časopisa:
2 .M. Pisačić, I. Kodrin, I Biljan, M. Đaković, Exploring the diversity of elastic responses of crystalline cadmium(II) coordination polymers: From elastic towards plastic and brittle responses, CrystEngComm, 2021, 23, 7072-7080.
- Rad je zbog visoke ocjene recenzenata istaknut na naslovnici časopisa: