Uvod u matematiku

Repozitorij

Repozitorij je prazan

Anketa

Na ovoj stranici trenutno nije odabrana niti jedna anketa!

Uvod u matematiku

Šifra: 284199
ECTS: 8.0
Nositelji: prof. dr. sc. Dijana Ilišević
prof. dr. sc. Goran Muić
Izvođači: doc. dr. sc. Lucija Validžić - Auditorne vježbe
Marin Varivoda , mag. math. - Auditorne vježbe
Prijava ispita: Studomat
Opterećenje:

1. komponenta

Vrsta nastaveUkupno
Predavanja 60
Auditorne vježbe 45
* Opterećenje je izraženo u školskim satima (1 školski sat = 45 minuta)
Opis predmeta:
CILJEVI PREDMETA:
Ovo je uvodni kolegij na studiju, koji premošćuje prazninu između nivoa srednjoškolske matematike i matematike koja se predaje na fakultetu. Cilj je ujednačiti matematičko predznanje studenata iz različitih srednjih škola, upoznati ih s osnovama matematičkog jezika, razviti sposobnost matematičkog mišljenja (poimanje i zaključivanje - matematički pojmovi, teoremi i dokazi) te sistematizirati i produbiti već stečeno znanje o skupovima brojeva, relacijama i funkcijama. Poseban naglasak stavlja se na neke elementarne funkcije - polinome, racionalne funkcije, eksponencijalnu i logaritamsku funkciju, te hiperbolne i area funkcije.

NASTAVNI SADRŽAJI:
1) Uvod. Kratki pregled povijesnog razvoja matematike i osnovnih matematičkih disciplina. Grčki alfabet.
2) Osnove logike sudova. Sudovi. Logički veznici i složeni sudovi. Tautologija. Obrat suda. Obrat po kontrapoziciji. Suprotni sud. Nužan i dovoljan uvjet. Negacija implikacije.
3) Predikati i kvantifikatori. Predikati. Univerzalni i egzistencijalni kvantifikator. Negacija kvantifikatora.
4) Oblici matematičkog mišljenja. Aksiomatska izgradnja matematičke teorije. Matematički pojam. Definicija pojma. Aksiom. Teorem i njegov obrat. Osnovna pravila izvoda. Osnovne vrste dokaza.
5) Skupovi. Pojam skupa. Podskup. Jednakost skupova. Univerzalni skup. Zadavanje skupova. Partitivni skup. Booleova algebra. Particija skupa. Kartezijev produkt skupova.
6) Relacije. Pojam relacije. Parcijalni uređaj. Uređaj. Relacija ekvivalencije. Klase ekvivalencije. Kvocijentni skup. Primjeri relacija (djeljivost, kongruencije, neke relacije u geometriji) i njihova svojstva.
7) Funkcije. Pojam funkcije. Domena, kodomena i slika funkcije. Praslika. Graf funkcije. Jednakost funkcija. Restrikcija i proširenje funkcije. Injekcija. Surjekcija. Bijekcija. Permutacija skupa. Kompozicija funkcija. Inverzna funkcija.
8) Skupovi brojeva. Skup N. Princip matematičke indukcije. Binomna formula. Skupovi Z i Q. Skup R. Decimalni zapis realnih brojeva. Skup C. Trigonometrijski zapis kompleksnog broja. Moivreove formule.
9) Ekvipotentni skupovi. Pojam ekvipotentnih skupova. Kardinalni broj skupa. Konačni i beskonačni skupovi. Prebrojivi i neprebrojivi skupovi. Veza kardinalnih brojeva konačnih skupova s Booleovim operacijama.
10) Prsten polinoma u jednoj varijabli. Kvadratna funkcija. Prsten polinoma. Teorem o nulpolinomu. Teorem o jednakosti polinoma. Djeljivost polinoma. Hornerova shema. Najveća zajednička mjera polinoma. Nultočke polinoma i algebarske jednadžbe. Osnovni teorem algebre. Interpolacijski polinom. Cjelobrojni i racionalni korijeni algebarske jednadžbe. Kompleksni korijeni algebarske jednadžbe. Reducibilnost i ireducibilnost polinoma nad C i R. Vieteove formule.
11) Polinomi dviju ili više varijabli. Prsten polinoma dviju varijabli. Simetrični polinomi. Osnovni teorem o simetričnim polinomima dviju varijabli. Simetrične jednadžbe. Polinomi više varijabli.
12) Racionalne funkcije i korijeni. Pojam racionalne funkcije. Rastav racionalne funkcije na parcijalne razlomke. Pojam funkcija korijena. Racionalne jednadžbe i nejednadžbe. Jednadžbe i nejednadžbe s korijenima.
13) Eksponencijalna i logaritamska funkcija. Potencije. Definicija, svojstva i graf eksponencijalne funkcije. Logaritamska funkcija kao inverzna funkcija eksponencijalne funkcije. Svojstva i graf logaritamske funkcije. Eksponencijalne i logaritamske jednadžbe i nejednadžbe.
14-15) Hiperbolne i area funkcije. Definicije, svojstva i grafovi hiperbolnih funkcija. Area funkcije kao inverzne funkcije hiperbolnih funkcija, njihova svojstva i grafovi
Literatura:
  1. Elementarna matematika 1, B. Pavković, D. Veljan.
  2. Uvod u matematiku, S. Kurepa.
  3. Uvod u matematiku (online skripta, dostupna na Merlinu), D. Ilišević, G. Muić.
  4. Matematička analiza, 1. dio, S. Mardešić.
1. semestar
Obavezni predmet - Redovni Studij - Matematika i fizika; modul: nastavnički
Termini konzultacija:
  • prof. dr. sc. Dijana Ilišević:

    Do 10.10.2025. konzultacije će se održavati isključivo prema prethodnom dogovoru. Nakon toga, termini konzultacija su: ponedjeljkom 12-13 i srijedom 16-17.

    Lokacija: 320/III
  • prof. dr. sc. Goran Muić:

    Konzultacije su  ponedjeljkom u 10 sati ili 15 sati (u tjednima kada je nastava)  ili  prema dogovoru emailom. Vrlo rado odgovoriti ću elektronskom poštom na svako vaše pitanje vezano za nastavu ili ispite. Mogu i Zoom konzultacije.  Teme za diplomski: algebra, algebarska geometrija i kompleksna analiza.

    Lokacija:
  • doc. dr. sc. Lucija Validžić:

    Četvrtak i petak 13-14h (obavezna najava)

    Lokacija:

Obavijesti - Arhiva

Povratak

Rezultati 1 - 2 od 2
Stranica 1 od 1
Po stranici: 
Sortiraj po: Naslov    Autor    Datum ↓  
[^] Obavijesti u vezi s kolegijem Uvod u matematiku Objavljeno 23. 9. 2025. u 08:39  ( Dijana Ilišević ) Uređeno: 24. 9. 2025. u 08:32  (Dijana Ilišević)
[^] Predavanja iz Uvoda u matematiku kod prof. Ilišević u ponedjeljak 29.9.2025. Objavljeno 23. 9. 2025. u 08:35  ( Dijana Ilišević )